


## GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)



M.B.A. (First Semester) Regular Examinations, January – 2025 23MBAPC11005 – Quantitative Techniques

(MBA)

Maximum: 60 Marks

(10 x 5 = 50 Marks)

AY 24

PART – A

 $(2 \times 5 = 10 \text{ Marks})$ 

| Q.1 | . Answer ALL questions                                                                                                                 | CO # | Blooms<br>Level |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|
| a.  | A student placed Rs 1000 in his saving account of a bank at 5 percent interest rate. How much shall it grow at the end of three years? | CO1  | K4              |
| b.  | A bag contains three white and five black balls. What is the chance that a ball drawn at random will be black?                         | CO2  | K3              |
| c.  | From the following data of the wages of 7 workers, compute the median: 7400, 4100, 6160, 6080, 5200, 7120, 4150                        | CO3  | K4              |
| d.  | Define regression coefficient. Explain with an example.                                                                                | CO4  | K1              |
| e.  | Write the components of time series.                                                                                                   | CO5  | <b>K</b> 1      |

(The figures in the right hand margin indicate marks)

## PART – B

## Marks CO # Blooms Answer ALL questions Level CO1 K3 2. A company wants to set up a reserve which will help the company to have an 6 annual equivalent of Rs. 10,00,000 for the next 20 years towards its employees' a. welfare measures. The reserve is assumed to grow at the reate of 15% annually. Find the single-payment that must be made now as the reserve amount. Differentiate the following: 4 CO1 K4 b. $\left(\sqrt{x}^{\sqrt{x}}\right)$ (OR)CO1 Differentiate the following w.r.t. x. 4 K3 c. $\frac{e^x + 1}{e^x - 1}$ A company has to replace a present facility after 15 years at an outlay of Rs 6 CO1 K4 d. 5,00,000. It plans to deposit an equal amount at the end of every year for the next 15 years at an interest rate of 18% compounded annually. Find the equivalent amount that must be deposited at the end of every year for the next 15 years. Eight coins are thrown simultaneously. Show that the probability of getting at 4 CO2 3.a. K2 least 6 heads is $\frac{37}{256}$ . Assuming that the probability of a fatal accident in a factory during the year is 6 CO<sub>2</sub> b. K3 $\frac{1}{1200}$ . Calculate the probability that in a factory employing 300 workers, there will be at least two fatal accidents in a year. (*Given* $e^{0.25} = 0.7788$ ) (OR)State and prove the Conditional Theorem of Probability. 4 CO2 K4 c.

d. The mean of the inner diameters (in inch) of a sample of 200 tubes produced by 6 CO2 K3 a machine is 0.502 and the standard deviation is 0.005. The purpose for which

these tubes are intended allows a maximum tolerance in the diameter of 0.496 to 0.508 (i.e., otherwise the tubes are considered defective). What percentage of the tubes produced by the machine is defective if the diameters are found to be normally distributed?

- 4.a. The means of two samples of sizes 50 and 100 respectively are 54.1 and 50.3 and 3 CO3 K3 the standard deviations are 8 and 7. Obtain the mean and standard deviation of the sample of size 150 obtained by combining the two samples.
- b. Calculate the arithmetic mean and median of the frequency distribution given 7 CO3 K4 below. Hence calculate the mode using the empirical relation between the three.

|              | 8         |
|--------------|-----------|
| Class-limits | Frequency |
| 130 - 134    | 5         |
| 135 – 139    | 15        |
| 140 - 144    | 28        |
| 145 - 149    | 24        |
| 3150 - 154   | 17        |
| 155 – 159    | 10        |
| 160 - 164    | 1         |
|              | (OR)      |

|      |                                                                                      |                               | (0               |                     |                 |                     |                     |                      |                    |   |     |      |
|------|--------------------------------------------------------------------------------------|-------------------------------|------------------|---------------------|-----------------|---------------------|---------------------|----------------------|--------------------|---|-----|------|
| c.   | An aeroplane flies<br>aeroplane covers<br>the second side, a<br>fourth side. Use the | at a speed of<br>at 300 kms p | 100km<br>er houi | s per he<br>the thi | our the rd side | first sid<br>and at | de, at 2<br>: 400 k | 200kms p<br>ms per h | er hour<br>our the | 5 | CO3 | K3   |
| d.   | Calculate the coef                                                                   | fficient of sk                | ewness           | from the            | he follo        | wing c              | lata:               |                      |                    | 5 | CO3 | K4   |
|      | ]                                                                                    | Mid-point:                    | 15               | 20 2                | 5 30            | 35                  | 40                  |                      |                    |   |     |      |
|      | -                                                                                    | Frequency:                    | 12               | 18 2                | 5 24            | 20                  | 21                  |                      |                    |   |     |      |
| 5.a. | In order to find th                                                                  | ne correlation                | n coeff          | icient b            | etween          | two v               | ariable             | s X and              | Y from             | 6 | CO4 | K4   |
|      | 12 pairs of observ                                                                   | vations, the fe               | ollowin          | ig calcu            | lations         | were n              | nade:               |                      |                    |   |     |      |
|      | ΣΧ                                                                                   | $X = 30, \Sigma Y =$          | $5, \Sigma X^2$  | = 670,              | $\Sigma Y^2 =$  | 285, Σ              | XY = 3              | 334                  |                    |   |     |      |
|      | On subsequent ve                                                                     | -                             | -                | -                   |                 | -                   |                     |                      | copied             |   |     |      |
|      | wrongly, the cor                                                                     | rect value l                  | being (          | X=10,               | Y=14)           | . Find              | the c               | orrect va            | alue of            |   |     |      |
|      | correlation coeffic                                                                  | cient.                        |                  |                     |                 |                     |                     |                      |                    |   |     |      |
| b.   | From the following                                                                   | ng data, find                 | the two          | o regres            | sion eq         | uations             | S:                  |                      |                    | 4 | CO4 | K3   |
|      |                                                                                      | X 1                           | 2 3              | 3 4                 | 5 6             | 5 7                 |                     |                      |                    |   |     |      |
|      |                                                                                      | Y 2                           | 4 7              | 7 6                 | 5 6             | 5 5                 |                     |                      |                    |   |     |      |
|      |                                                                                      | <u> </u>                      | (C               | DR)                 |                 |                     |                     |                      |                    |   |     |      |
| c.   | In trying to evalua                                                                  | te the effecti                | veness           | in its ac           | lvertisii       | ng cam              | paign,              | a firm co            | mpiled             | 7 | CO4 | K3   |
|      | the following info                                                                   | ormation:                     |                  |                     |                 |                     |                     |                      |                    |   |     |      |
|      | Year                                                                                 | 2014                          | 2015             | 2016                | 2017            | 2018                | 2019                | 2020                 | 2021               |   |     |      |
|      | Advertising                                                                          | -                             | 15               | 15                  | 23              | 24                  | 38                  | 42                   | 48                 |   |     |      |
|      | Expenditur                                                                           | e                             |                  |                     |                 |                     |                     |                      |                    |   |     |      |
|      | ('000 Rs)                                                                            | <b>D ) 5</b> 0                | <b>-</b>         | 5.0                 | 7.0             | 7.0                 | 0.0                 | 0.2                  | 0.5                |   |     |      |
|      | Sales (lakh                                                                          |                               | 5.6              | 5.8                 | 7.0             | 7.2                 | 8.8                 | 9.2                  | 9.5                |   |     |      |
|      | Calculate the reg                                                                    |                               |                  |                     |                 | •                   | -                   |                      | stimate            |   |     |      |
| 1    | the probable sales                                                                   |                               |                  | -                   |                 |                     |                     |                      | TTI '              | 2 | CO4 | VZ A |
| d.   | The coefficient of                                                                   |                               |                  |                     |                 |                     |                     |                      |                    | 3 | CO4 | K4   |
| 6    | covariance is 16.                                                                    |                               |                  |                     |                 |                     |                     |                      |                    | 5 | COF | V2   |
| 6.a. | Calculate trend va                                                                   | aues from th                  | e tollov         | wing da             | ta relati       | ing to t            | ne pro              | auction of           | or tea in          | 5 | CO5 | K3   |

6.a. Calculate trend values from the following data relating to the production of tea in 5 CO5 India by the *moving average method*, on the assumption of a four-yearly cycle:

| Year :     | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|------------|------|------|------|------|------|------|------|------|------|------|
| Production | 464  | 515  | 518  | 467  | 502  | 540  | 557  | 571  | 586  | 612  |
| (mm lb) :  |      |      |      |      |      |      |      |      |      |      |

b. The sales of a company in lakhs of rupees for the years 2001 to 2007 are given 5 CO5 K4 below:

| Sales (Rs lakhs): 32 47 65 92 132 190 2 | Year :             | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|-----------------------------------------|--------------------|------|------|------|------|------|------|------|
|                                         | Sales (Rs lakhs) : | 32   | 47   | 65   | 92   | 132  | 190  | 275  |

Find trend values by using the equation  $Y_c = ab^X$  and estimate the value for 2008.

(OR)

c. Calculate the trend values by the method of least square. Also calculate the 5 CO5 K4 increase in sales and trend value for 2022.

| Year :             | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
|--------------------|------|------|------|------|------|------|------|
| Sales (Rs lakhs) : | 125  | 128  | 133  | 135  | 140  | 141  | 143  |

d. Fit a straight line trend to the data and estimate the profit for the year 2017

5 CO5 K3

| 0                 |      |      |      | -    |      | •    |      |
|-------------------|------|------|------|------|------|------|------|
| Year:             | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| Profits of a firm | 60   | 72   | 75   | 65   | 80   | 85   | 95   |
| (in lakhs Rs):    |      |      |      |      |      |      |      |

--- End of Paper ---