AY 23

GIET UNIVERSITY, GUNUPUR – 765022

Ph.D. (Second Semester) Examinations, April - 2024

Reg. No

PPEMT2036 - Numerical Analysis

(Mathematics)

Maximum: 70 Marks

Time: 3 hrs

The figures in the right-hand margin indicate marks.

Answer ANY FIVE Questions

(14 x 5 = 70 Marks)

Marks

7

7

- 1.a. Find a real root of the equation $2x = \cos x + 3$ correct to three decimal places using fixed point iteration method. Show that $\phi(x) = \frac{\cos x + 3}{2}$ is an approximate iteration function.
 - b. Solve the following system by Gauss-elimination method
 - 2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16
- 2.a. Find a real root of walli's equation $x^3 2x 5 = 0$ by regula falsi method correct up-to two 7 decimal places.
 - b. Solve the following system of equations by Jacobi iteration method starting with initial guess 7 $x_1 = 0, x_2 = 0, x_3 = 0$

$$10x_1 + x_2 + x_3 = 12$$

$$x_1 + 10x_2 + x_3 = 12$$

$$x_1 + x_2 + 10x_3 = 12$$

- 3.a. Find the unique polynomial of degree 2 or less such that f(0) = 1, f(1) = 3, f(3) = 5 using 7 the Lagrange interpolation.
 - b. For the following data calculate the differences and obtain the forward difference polynomial 7 interpolate at x = 6

Х	0.1	0.2	0.3	0.4	0.5
f(x)	1.40	1.56	1.76	2.00	2.28

4.a. Solve the following system of equations:

$$4x + y + 2z = 4$$
$$3x + 5y + z = 7$$
$$x + y + 3z = 3$$

By the Jacobi method and Gauss- Seidel method in each case continue the iteration up-to 3steps starting with initial approximation x = 0, y = 0, z = 0.

b. Given x and f(x) in the following table. Find f(x) when x = 2 using Newton's divided 7 difference formula

Х	1	3	4	6
f(x)	-3	9	30	132

5.a. For the following data calculate the differences and obtain the backward difference 7 polynomials interpolate at x = 0.25, and x = 0.35

f(x) 1 5 31 121 341 781	Х	0	1	2	3	4	5
	f(x)	1	5	31	121	341	781

b. Construct Newton's divided difference table for the following data and hence find the 7 interpolating polynomial from the given data

Х	-1	0	2	5
f(x)	-11	-5	-5	55
	c1 dx			

7

7

6.a. Evaluate the integral $I(f) = \int_0^1 \frac{dx}{1+x}$ by dividing the interval [0, 1] into two equal parts and 7 then applying the Gauss- Legendre 3-point rule to each part.

- b. Evaluate approximately the integral $I(f) = \int_0^1 \frac{dx}{1+x}$ by using 1-point, 2-point, 3-point Gauss 7 Legendre rules.
- 7.a. Evaluate the integral $I(f) = \int_0^6 \frac{dx}{1+x^2}$ by using
 - (a) Compound Trapezoidal Rule
 - (b) Compound Simpson's $\frac{3}{8}th$ rule
 - (c) Compound Simpson's $\frac{1}{3}rd$ rule.
 - b. Find the approximation to y(0.4) using the Taylor method of order two with h=0.2 for the 7 initial value problem: $\frac{dy}{dx} = x - y + 1$, y(0) = 0, $0 \le x \ge 1$.
- 8.a. Solve: $\frac{dy}{dx} = x + y$; y(0) = 1, 2^{nd} approximation by Picard's method.
 - b. Determine y for h=0.1, 0.2, 0.3, 0.4. Where y is the solution of the differential equation $\frac{dy}{dx} = 7$ 2(y + 1); y(0) = 0 by using Euler's method with h=0.1.

---End of Paper---