AY 23

Reg. No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

Ph.D. (Second Semester) Examinations, April - 2024

PPEMT2040 – Non-Linear Functional Analysis

(Mathematics)

Maximum: 70 Marks

The figures in the right-hand margin indicate marks.

Answer ANY FIVE Questions

(14 x 5 = 70 Marks)

		Marks				
1.a.	Prove that every closed subspaces of a complete metric space is complete.					
b.	Let (x,d) be a complete metric space, $F_n: X \to X$ is a sequence of continuous maps. Assume that each F_n has a fixed point x_n . If $F_n \to F$ uniformly on X. show that					
	i. If $x_n \rightarrow x_0$, or if $Fx_0 \rightarrow x_0$ then x_0 is a fixed point of F. ii. If F is contractive then $\{x_n\}$ converges to the fixed point of F.					
2.a.	State and prove Nadler Theorem.	14				
3.a.	. Let (x,d) be a complete metric space $F: X \to X$ be a map such that $F^N : X \to X$ is contraction for N. Then for F has a unique fixed in X.					
b.	Let (x,d) be a complete metric space and F:X \rightarrow X a map, not necessarily continuous. Assume (*) for each E>0, there is a delta (E)>0 such that if d(x,Fx)< δ then F[B(x,E) \leq B(x,E)Then,if d(F_u^n, F_u^{n+1}) \rightarrow 0 for some u \in X, then the sequences { F_u^n } converges to a fixed point for F.	7				
4.a.	Let (x,d) be complete $\emptyset: X \to R^+$ an arbitrary non-negative function. Assume that inf $\{P(x)+Q(x): d(x,y) \ge a\} = \mu(a) > 0 \forall a > 0$. Then each sequence $\{x_n\} \subseteq X$ for which $\phi(x_n) \to 0$ converges to one and the same point μ in X.	7				
b.	Let (X,d) be a complete metric space. Let $F: X \to C\mathcal{B}(x)$ be a α contractive map. Then F has a fixed point.	7				
5.a.	State and prove Bishop – Phelps theorem.	14				
6.a.	Let X be a subset of a space E and f: $X \rightarrow E$.					
	 i. X : compact, Convex ii. E: Locally convex topological vector space. iii. F = {f}: a commuting family of affine functions. 					
	Then prove that F has a fixed point.					
7.a.	State and prove Kakutani theorem.	8				
b.	The metric space of continuous function c[a,b] with the uniform metric d_{∞} is complete.	6				
8.a.	State and prove Banach's fixed point theorem.					
b.	Consider the initial value problem $u' = 1+u^2$, u(0)=0. What is the maximum of h.	4				

---End of Paper---