OPC:	RN22PHD389
QI C.	111/2/1110/30/

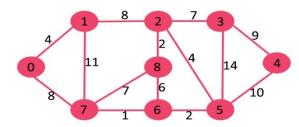
GIET UNIVERSITY, GUNUPUR – 765022

Ph.D. (Second Semester) Examinations, November - 2023

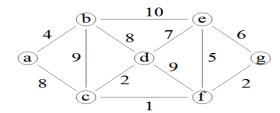
WPPEMT2037 - Advanced Discrete Mathematics

(Mathematics)

Time: 3 hrs Maximum: 70 Marks


The figures in the right hand margin indicate marks.

Answer ANY FIVE Questions


 $(14 \times 5 = 70 \text{ Marks})$

		Marks
1.a.	Show that the hypothesis "if you send me an email message, then I will finish writing the program" "if you do not send me an email message, then I will go to sleep early" and "if I go to sleep early, then I will wake up feeling refreshed" leads to a conclusion "if I do not finish writing the program then I will wake up feeling refreshed"	7
b.	Show that if 'n' is an integer and n^3+5 is odd, then 'n' is even by method of contraposition.	7
2.a.	Prove that $3+3.5+3.5^2++3.5^n=\frac{3(5^{n+1}-1)}{4}$ whenever n is a non-negative integer by method of induction.	7
b.	Show by method of induction that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for all positive integers n	7
3.a.	In A survey of 100 students, it was found that 30 studied Mathematics, 54 studied Statistics, 25 studied Operations Research, 1 studied all the three subjects, 20 studied Mathematics and Statistics, 3 studied Mathematics and Operation Research and 15 studied Statistics and Operation Research. Find how many students studied none of these subjects and how many students studied only Mathematics?	7
b. 4.a.	Draw the Hasse diagram of the poset ($\{2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72\}$,). a) Find the maximal elements. b) Find the minimal elements. c) Is there a greatest element? d) Is there a least element? e) Find all upper bounds of $\{2, 9\}$. f) Find the least upper bound of $\{2, 9\}$, if it exists. g) Find all lower bounds of $\{60, 72\}$. h) Find the greatest lower bound of $\{60, 72\}$, if it exists. If $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ be a sub-group of G under the operation multiplication then	7
	find all the left cosets of H in G.	7
b.	Let G be a group congaing even number of elements, then prove that there exist at least one element which has its own inverse.	7
5.a.	Show that if meet operation is distributive over join operation then join operation distributive over meet operation.	7
b.	Let $E(x_1, x_2, x_3) = \overline{(x_1 \vee x_2) \vee (x_1 \wedge x_3)}$ be a Boolean expression. Find its disjunctive and conjunctive normal forms.	7

6.a. find the shortest path from the vertex 0 to the vertex 4 by using Dijkstra's algorithm

b. Find the minimum spanning tree of the following graph by using Prim's's algorithm.

- 7 a. Prove that in a distributive lattice if an element has a complement then this complement is unique.
 - b. For any a, b.c and d in a lattice (A, \leq) if $a \leq b$ and $c \leq d$ then show that $a \vee c \leq b \vee d$ and $a \wedge c \leq b \wedge d$.

7

7

7

7

7

- 8 a. State and prove demorgan's property of distributive lattice.
- b. Let (A, \leq) be a distributive lattice. show if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some a then show that x = y.

---End of Paper---