AY 23

Reg. No

GIET UNIVERSITY, GUNUPUR - 765022

Ph.D. (First Semester) Examinations, January - 2024

23SPPEEC1012 - Biomedical Signal Processing

(ECE)

Time: 3 hrs

Maximum: 70 Marks

(14 x 5 = 70 Marks)

The figures in the right hand margin indicate marks.

Answer ANY FIVE Questions

Marks

1.a.	Discuss the role of biomaterials in electrode design for bio-physiological sensing. How does	7
	the choice of biomaterial affect signal quality and biocompatibility?	/
b.	What are some practical challenges in using body surface electrodes for electrocardiography	7
	(ECG) and electromyography (EMG) applications? How can these challenges be addressed?	/
2.a.	Explain the role of Fourier analysis in biomedical signal processing. How does it help in	6
	understanding the frequency components of bio-signals?	Ū
b.	Explain the principles of signal conditioning in the context of bio-signal acquisition. How do	
	analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) play a role in	8
	the process?	
3.a.	Describe the significance of time-frequency analysis in the context of diagnosing and	7
	monitoring medical conditions. Provide practical examples of its applications in healthcare.	7
b.	How does the coherent treatment of various biomedical signal processing methods contribute	
	to signal classification and noise reduction? Provide real-world applications to illustrate the	7
	concept.	
4.a.	Discuss the challenges in analysing non-stationary signals in the biomedical context. How	6
	can spectral analysis techniques be adapted to handle such signals effectively?	0
b.	Discuss the concepts of correlation and regression in the context of analysing bio-signals.	8
	How do these statistical techniques help in medical research and diagnosis?	0
5.a.	Explain the analysis of chaotic signals and their relevance in biomedical signal processing.	7
	Provide examples of bio-signals that exhibit chaotic behaviour.	/
b.	What are the various types of bio-signals, and how do their origins differ? Discuss the	7
	parameters that are diagnostically significant for each type.	/
6.a.	Define Principal Component Analysis (PCA) and explain its application in biomedical signal	
	processing. Provide examples of how PCA can be used to extract meaningful information	7
	from bio-signals.	

- b. Discuss the advantages of wavelet analysis, specifically time-frequency analysis, in 7 processing bio-signals. Provide examples of bio-signals where wavelet analysis is particularly useful.
- 7.a. Describe the significance of Independent Component Analysis (ICA) in separating and identifying independent sources within bio-signals. Provide practical examples of its 7 applications in healthcare and research.
 - b. Compare and contrast the acquisition of bio-signals using body surface electrodes, internal electrodes, and microelectrodes. Highlight the practical considerations and challenges for 7 each type of electrode.
- 8.a. Provide a detailed overview of the computational methods for extracting diagnostically significant parameters from bio-signals using Fourier and wavelet analysis.
 - b. Define signal classification and discuss its importance in biomedical signal processing. How is it used to distinguish between signals and noise?

---End of Paper---