

Reg. AY 23

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (Second Semester) Examinations, May – 2024 MPETE2031 – Advanced Refrigeration Engineering

(Heat Power & Thermal Engineering)

Maximum: 70 Marks

PART – A			(2 x 10 = 20 Marks)		
Q.1. Answer all questions		CO#	Blooms		
			Level		
a.	Explain 1 TR.	CO1	K1		
b.	Explain the effect of discharge pressure on COP.	CO1	K2		
c.	List the advantages VCRS over VARS.	CO2	K1		
d.	Sketch the T-s and p-h diagrams for the VCRS cycle when the vapour is super-hear at the end of compression.	ted CO1	K2		
e.	Explain defrosting and frosting evaporator.	CO2	K2		
f.	Explain the function of rectifier and analyser in VARS.	CO4	K1		
g.	Explain the reason of using capillary tube over other expansion devices in househorefrigerator.	old CO2	K1		
h.	Define sensible heat factor and latent heat.	CO3	K1		
i.	Write on bypass factor of heating coils.	CO3	K2		
j.	State the factors that affect comfort air conditioning.	CO4	K1		

(The figures in the right hand margin indicate marks.)

PART – B

(10 x 5=50 Marks)

Answer ANY FIVE questions	Marks	CO#	Blooms Level
2. In an open cycle air refrigeration machine, air is drawn from a cold chamber a	t 10	CO2	K3
$-2^{O}C$ and 1 bar and compressed to 11 bar. It is then cooled at this pressure, to the	;		
cooler temperature of 20° C and then expanded in expansion cylinder and returne	d		
to the cold room. The compression and expansion are isentropic and follows th	e		
law pv $^{1.4}$ = constant. The capacity of refrigeration is 15TR. Calculate the	e		
theoretical COP and rate of air circulation in kg/min.			
3.a. Describe the regenerative air refrigeration system with schematic diagram.	5	CO2	K2
b. Difference between air cooled condenser and water cooled condenser.	5	CO2	K2
4. A refrigerator using carbon dioxide as a refrigerant works between th temperatures 17.5°C and -17.5°C. The gas leaves the compressor at 30°C. The gas is completely condensed but there is no undercooling. Calculate the theoretical	S	CO1	K3
COP.			

	Temp.	Temp.Enthalpy (kJ/kg)Entropy (kJ/kgK)								
	oC	h _F	h _{FG}	h _G	S _F	S _G				
	17.5	470	639.6	169.6	4.37	4.95				
	-17.5	378.5	628	279.5	4.05	5.12				
5.	Explain the working of Li Br refrigeration system with neat sketch.							CO1	K2	
6. a.	Atmospheric air with dry bulb temperature of 28° C and a wet bulb temperature of						5	CO3	K3	
	17°C is cooled to 15°C without changing its moisture content. Find: 1. original									
	relative humidity 2. Final relative humidity and 3. Final wet bulb temperature.									
b.	b. Air is supplied to a conditioned room at 17°C DBT and 50% RH. The air leaves 5								K3	
	the room at 25°C DBT during which RH increases by 5%. Find (i) DPT of supply									
	air (ii) Chang	ge in enthalpy o	luring proces	ss. (iii) Chang	ge in specific	humidity during				
	the process.	Show it on psy	chrometric c	hart.						
7.	7. Saturated air at 21°C is passed through a drier so that its final relative humidity							CO3	K3	
	is 20%. The	drier uses silic	a gel adsorbe	ent. The air is	s then passed	through a				
	cooler until i	its final temper	ature is 21°C	C without a cl	hange in spec	ific humidity.				
	Determine:									
	1. The temperature of air at the end of the drying process; 2. the heat rejected									
	during the co	ooling process;	3. the relativ	ve humidity a	at the end of c	cooling				
	process; 4. th	he dew point te	mperature at	the end of th	ne drying pro	cess; and 5.				
	the moisture	removed durin	ng the drying	process.						
8.a.	An air condi	tioning plant is	s required to	60m ³ of air	per minute at	a DBT of 21 ^o C	6	CO4	K3	
	and 55% RH	I. The outside	air is at DBT	$C 28^{\circ}C$ and C	50% RH. Dete	ermine the mass				
	of water drained and capacity of cooling coil. Assume the air conditioning plant									
	first to dehumidify and then to cool the air.									
b.	Explain the	working of sun	nmer air cono	ditioning syst	tem.		4	CO4	K2	

--- End of Paper ---