QP Code: RM23MTECH121	Reg. No											AY 23
-----------------------	------------	--	--	--	--	--	--	--	--	--	--	-------

GIET UNIVERSITY, GUNUPUR – 765022

M. Tech. (Second Semester) Examinations, May-2024

MPCTE2020 – Advanced Fluid Mechanics

(Heat Power and Thermal Engineering)

Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)							
PART – A	$(2 \times 10 = 20)$	Marks)					
Q1. Answer all questions	CO#	Blooms					
		Level					
a. Define a non-Newtonian fluid.	CO1	K1					
b. Explain Reynolds number.	CO3	K2					
c. Define Couette flow.	CO4	K1					
d. How do aircrafts reduce drag?	CO3	K2					
e. Explain the laminar flow with example.	CO4	К3					
f. Explain no-slip condition.	CO3	K2					
g. Define viscosity with mathematical formula.	CO4	K3					
h. Write a short note on turbulent flow.	CO4	K1					
i. Define Prandtl number and write it's formula.	CO4	K1					
j. Define Nusselt number.	CO4	K2					

PART - B

(10 x 5 = 50 Marks)

Answer ANY FIVE questions	Marks	CO#	Blooms
2. a. Explain the difference between the Lagrangian and the Eulerian description of fluid5 motion.		CO1	Level K2
b. Water is heated to 80oC for 10 min. How much would be the temperature if $k = 0.565$		CO1	K3
per min and the surrounding temperature is 25°C?			
3.a. Describe laminar and turbulent flow. Explain the Reynolds number value of laminar5		CO3	К2
and turbulent flow.			
b. A rectangular film of liquid is formed in a frame of wire and a movable rod of length5		CO3	К3
4cm.What force must be applied to the rod to keep it in equilibrium if the surface			
tension of the liquid is $40 \times 10-3 \text{ N/m}$.			
4. a. Explain thermal entrance region? Describe thermal entry length? What is thermally5		CO2	K2
developing flow.			
b. A light square wireframe each side of which is 10cm long hangs vertically in the5		CO3	K3
water with one side just touching the water surface. Find the additional force			
necessary to pull the frame clear of the water (Surface tension=0.074 N/m).			
5.a. Where is the end point of entry length? Discuss entry lengths through laminar flow5		CO4	K2
and turbulent flow.			
b. Define hydrodynamic entrance region? Describe hydrodynamic entry length?5		CO1	К2

Explain hydrodynamically fully developed region.

6. a. A thin and light ring of the material of radius 3 cm is rested	flat on the liquid surface.5 CO2	K3
When slowly raised, it is found that the pull required is 0.0	3N more before the film	
breaks than after. Find the surface tension of the liquid.		
b. Explain Friction Drag. Describe how it is caused.	5 CO2	K2
7.a. Discuss the concept of continuum and definition of a fluid.	Explain Nusselt number.5 CO3	K2
b. Differentiate between Newtonian and non-Newtonian fluid	. Explain time dependent5 CO3	K2
viscosity.		
8. a. Define Bernoulli's equation? Describe Pascal's Law.	5 CO3	K2
b. Describe a shear thickening fluid? Explain a shear thin	nning fluid? Enumerate5 CO4	K2
oobleck.		

--- End of Paper ---

Page 1 of 1