Reg. A No A

GIET UNIVERSITY, GUNUPUR – 765022 M. Tech (Second Semester) Examinations, May – 2024 MPCEC2010 – System-On-Programmable Chip Design

(VLSI)

	(VLSI)					
				Maximum: 70 Marks		
(The figures in the right hand margin indicate marks.)						
PART – A			(2 x 10 = 20 Marks)			
Q.1.	Answer all questions	C	C#	Blooms		
				Level		
a.	What does IP mean in VLSI?	(CO2	K2		
b.	Explain the advantages of using IP blocks in FPGAs.	(CO2	K1		
c.	Differentiate between emulation and FPGA prototyping.	(CO1	K2		
d.	Define IP-based design.	(CO1	К3		
e.	Describe a real-time processing operating system.	(CO3	K2		
f.	Outline the structure of an RTOS.	(CO3	K2		
g.	Identify the three major components of FPGA architecture.	(CO4	K3		
h.	Define a peripheral interface and explain its role.	(CO4	K1		
i.	Define SoC in testing.	(CO2	K2		
j.	List the four layers of application architecture.	(CO3	K1		
PART – B		(10 x 5=50 Marks)				
Answer ANY FIVE questions		Marks	CO#	Blooms		
				Level		
2. a.	Describe the instruction set architecture (ISA) comprehensively.	5	CO1	K3		
b.	Differentiate between a NoC and SoC chip clearly.	5	CO1	K2		
3.a.	Explain the principles of routing thoroughly.	5	CO2	K3		
b.	Explain the steps involved in IP life cycle management in detail.	5	CO2	K4		
4. a.	Briefly elucidate on IP and its various types concisely.	5	CO3	K5		
b.	Explain the SoC architecture of an FPGA in depth.	5	CO3	K3		
5.a.	Differentiate between a peripheral and an interface explicitly.	5	CO4	K3		
b.	Elaborate on the concept of core wrapper in DFT (Design for Testability extensively.) 5	CO4	K4		
		_	000	17.5		

- 6. a. Provide a comprehensive overview of IEEE P1500 and its significance in chip 5 CO2 K5 testing.
- b. Discuss the concept of pipelining in processor architecture thoroughly. 5 CO2 K3
- 7.a. Describe the role and importance of cache memory in enhancing processor 5 CO1 K5 performance in detail.

b.	Explain the concept of clock domain crossing and its associated challenges in digital design thoroughly.	5	CO1	K4
8. a.	Discuss the importance and various techniques of power management in SoC design comprehensively.	5	CO3	K3
b.	Provide a detailed explanation of the role of interconnects in the performance of SoC designs.	5	CO4	K4

--- End of Paper ---