Reg.

No

Time: 3 Hrs

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (Second Semester) Examinations, May - 2024

MPCSE2020 - Structural Dynamics

(Structural Engineering)

Maximum: 70 Marks

		1,100,11110,1111,	0 10141110				
(The figures in the right hand margin indicate marks.)							
PART – A		(2 x 10 = 20 Marks)					
Q.1. Answer all questions		CO#	Blooms				
			Level				
a.	List out the types of vibration isolation.	CO1	K2				
b.	Write down the fourier series for periodic loading.	CO1	K2				
c.	What are all the differences between free and forced vibration?	CO1	K2				
d.	What is Damping matrix?	CO2	K1				
e.	State the modal orthogonal conditions with reference to mass and stiffness.	CO2	K2				
f.	What do you mean by dynamic coupling?	CO3	K1				
g.	Recommend any two methods of finding natural frequency of multiple degree of freedom system.	CO3	K2				
h.	Draw a neat sketch used to derive equation of flexural vibration of uniform beams.	. CO3	K2				
i.	Use Rayleigh's method find an expression for fundamental frequency of a continue beam by taking the shape function $\Psi(x) = (x/L)^2$	ous CO4	К3				
j.	List out Rayleigh's quotient.	CO4	K1				

PART – B

(10 x 5=50 Marks)

Answer ANY FIVE questions		CO#	Blooms
			Level
2. a. A vibrating system consists of a mass of 5kg, spring of stiffness 120 N/m and	a 5	CO1	K3
damper with a damping co-efficient of 5 N-s/m. Examine Damping factor	or,		
Natural frequency of the system, Logarithmic decrement, The ratio of tw	/0		
successive amplitude, The number of cycles after which the initial amplitude	de		
reduces to 25%			
b. A weight W is suspended from the mid span of a simply supported beam of spa	an 5	CO1	K3
L, flexural rigidity EI and mass per unit length m. If the wire by which the	ne		
weight w is suspended suddenly snaps. (a) Describe the subsequent vibration	of		
the beam. Neglect damping. (b) Find its deflection expression at the centre			
3.a. A block of weight 900 N (moving between vertical guides) is supported by	a 5	CO1	K3
spring of stiffness 10^{6} N/m. the block is given an initial displacement of 50 m	m		
with a velocity of 300 mm/sec, determine the period of vibration, natur	al		

frequency, amplitude of motion, maximum velocity and maximum acceleration

AY 23

of the block. Assuming a damping of 20% and show the logarithmic decrement and the damping coefficient of the system.

b.	An SDOF system consists of a mass of 20kg, a spring of stiffness 2200N/m and a	5	CO2	K3
	dashpot with a damping coefficient of 60 N-s/m is subjected to a harmonic			
	excitation of F=200 sin 5t N. Analyse the system for Damping coefficient,			
	Frequency ratio, Steady state Response and phase angle.			
4. a.	Determine the natural frequencies and mode shapes of a three storey building	5	CO2	K2
	having a floor weight 2500kN, 2000kN for the first, second floor respectively.			
	The height of each floor is $3m$ and $EI = 28 \times 1012 \text{ Nmm}^2$			
b.	Explain in detail about the free and forced vibration of two degree of freedom	5	CO2	K2
	systems			
5.a.	A three storey frame shown in fig. is subjected to an excitation force of P $\cos\omega t$	5	CO2	K3
	at the top level due to steady state vibration. Determine the response at the top			
	level on the basis of consideration of first mode only and first two modes only			
	for $\omega = 0$ and $\omega = 0.5 \text{ p1}$			
b.	Construct the step by step procedure involved in the mode superposition	5	CO3	K2
	technique for a 3 DOF system			
6. a.	Explain some approximate methods for solving MDOF systems	5	CO3	K2
b.	Find out the solution for equation of motion and find out the natural frequency	5	CO3	K2
	and mode shapes with one end fixed and another end simply supported			
7.a.	Determine from first principles, the first three natural frequencies and mode	5	CO4	K2
	shapes of a simply supported beam subjected to free flexural vibrations			
b.	Express in detail the equation of motion by Virtual work method	5	CO4	K3
8. a.	(i) Explain about the free and forced vibration of continuous systems.	5	CO4	K2
	(ii) List out the applications of virtual work method?			
b.	Determine the first two natural frequencies of uniform cantilever beam by	5	CO4	K3
	Rayleigh – Ritz method. Assume $\varphi(x) = C1x2+C2x3$			

--- End of Paper ---