QP Code: RM23MTECH153	Reg.					
	No					

GIET UNIVERSITY, GUNUPUR - 765022

AY 23

M. Tech (Second Semester) Examinations, May – 2024

MPEPE2043 - Smart Grids

(Power Electronics)

Time: 3hrs	(Maximum: 70 Marks
_	(The figures in the right hand margin indicate marks.)	
PART - A		$(2 \times 10 = 20 \text{ Marks})$

Q1.	Answer all the Questions	СО	Blooms
		CO3	Level K2
a.	Explain the concept of home automation and its relevance in modern households.	COS	KΔ
b.	Define plug-in hybrid energy vehicles and discuss their advantages.	CO3	K2
c.	Describe conventional metering and its limitations.	CO4	K2
d.	What are Intelligent Electronic Devices (IEDs), and how are they used in modern	CO4	K3
	power systems?		
e.	Discuss the benefits and advantages of implementing a smart grid.	CO3	K4
f.	Explain the services provided by Distribution System Integrators (DSI).	CO2	K4
g.	Discuss the concepts of "Vehicle to Grid" and "Grid to Vehicle."	CO2	K3
h.	Provide two practical applications of Bay controllers within the context of power	CO2	K3
	systems.		
i.	Compare and contrast conventional metering with smart metering, highlighting at	CO1	K2
	least two key differences.		
j.	Explain the concept of "Grid Resilience" in the context of Smart Grids and discuss	CO1	К3
	one key technology or strategy used to enhance grid resilience.		

PART – B (10 x 5=50 Marks)

Answer ANY FIVE questions		Marks	CO#	Blooms
2. a.	Offer detailed insights into the block diagram of a smart substation, highlighting	5	CO4	Level K3
	its various components and their functions.			
b.	Describe the configuration and key components of an Energy Management	5	CO4	K4
	System (EMS) within the framework of a smart grid.			
3.a.	Discuss the importance of power quality audits within the context of a smart	4	CO3	К3
	grid.			
b.	Can you provide a brief overview of voltage regulation in power systems?	6	CO3	K3
4. a.	Analyze the intricacies of how smart meters contribute to enhanced energy	5	CO3	K4
	management, including data collection, two-way communication, and real-time			
	monitoring.			
b.	Explain the various sensing, measurement, control, and automation technologies	5	CO4	K4

	efficiency and reliability.			
5.a.	Write an in-depth analysis of the opportunities and barriers associated with the	6	CO1	К3
	implementation of smart grids, considering economic, technological, and			
	regulatory aspects.			
b.	Delve into the concept of power quality audits, detailing their methodologies and	4	CO1	К3
	the critical parameters they assess in electrical supply.			
6. a.	Discuss the cybersecurity measures and distributed storage solutions that are	5	CO1	К3
	essential for safeguarding smart grid infrastructure and ensuring reliable			
	operation.			
b.	Provide a comprehensive breakdown of the subsystems utilized in smart sensors,	5	CO3	К3
	covering aspects such as data acquisition, processing, and communication.			
7.a.	Explore the various issues that may arise when interconnected microgrids.	4	CO3	K3
b.	Elaborate on the functional block diagram of a smart meter, detailing the	6	CO2	К3
	components and their functions.			
8. a.	Explain the significance and interplay between Distribution Automation (DA)	5	CO2	К3
	and Advanced Metering Infrastructure (AMI) in modern power systems.			
b.	Describe the concept of Automatic Meter Reading (AMR) and its significance.	5	CO2	К3

employed in modern power systems, their roles, and their impact on system

--- End of Paper ---