| Reg. |  |  |  |  |  | AY 23 |
|------|--|--|--|--|--|-------|
| Nο   |  |  |  |  |  |       |



QP Code: RM23MTECH157

## **GIET UNIVERSITY, GUNUPUR - 765022**

M. Tech (Second Semester) Examinations, May – 2024 MPCMT2010 – Metal Cutting – Theory and Practice (Manufacturing Technology)

Time: 3Hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

| PART – A                  |                                                                                                                                                                             | $(2 \times 10 = 20 \text{ Marks})$ |     |        |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|--------|
| Q.1. Answer all questions |                                                                                                                                                                             | C                                  | О#  | Blooms |
|                           |                                                                                                                                                                             |                                    |     | Level  |
| a.                        | Name the seven elements of tool geometry for a single point cutting tool.                                                                                                   | (                                  | CO1 | K1     |
| b.                        | Explain the assumptions made by the Merchant circle in metal cutting processes                                                                                              | (                                  | CO1 | K2     |
| c.                        | Mention the condition that induces the formation of built up edge                                                                                                           | (                                  | CO1 | K1     |
| d.                        | Explain the factors should be considered for selection of tool materials?                                                                                                   | (                                  | CO2 | K1     |
| e.                        | The useful tool life of an HSS tool, machining mild steel at 25m/min is 5 hours.                                                                                            | (                                  | CO2 | K2     |
|                           | Calculate the tool life when tool operates at 40m/min                                                                                                                       |                                    |     |        |
| f.                        | fine the factors affecting the Machinability?                                                                                                                               |                                    | CO3 | K1     |
| g.                        | Classify the types of cutting fluids?                                                                                                                                       |                                    | CO3 | K2     |
| h.                        | xpress the rule for gear ratio in differential indexing.                                                                                                                    |                                    | CO4 |        |
| i.                        | analyze the effects of drill geometry variations on drilling performance                                                                                                    |                                    | CO4 | K3     |
| j.                        | Define the process of self sharpening of the grinding wheel?                                                                                                                | (                                  | CO4 | K1     |
| PART – B                  |                                                                                                                                                                             | (10 x 5=50 Marks)                  |     |        |
| Answer ANY FIVE questions |                                                                                                                                                                             | Marks                              | CO# | Blooms |
|                           | <del></del>                                                                                                                                                                 |                                    |     | Level  |
| 2. a.                     | How is metal removed in Metal cutting? Explain the process with simple sketch                                                                                               | 5                                  | CO1 | K2     |
| b.                        | With reference to orthogonal cutting, explain the following terms: Shear stress                                                                                             | 5                                  | CO1 | K4     |
|                           | plane, shear strain, cutting ratio, shear angle. Shear Stress in Shear Plane                                                                                                |                                    |     |        |
| 3.a.                      | In an orthogonal cutting test with a tool of rake angle 8°, the following                                                                                                   | 10                                 | CO1 | K3     |
|                           |                                                                                                                                                                             |                                    |     |        |
|                           | observations were made: Chip thickness ratio: 0.2 Horizontal component of the                                                                                               |                                    |     |        |
|                           | observations were made: Chip thickness ratio: $0.2$ Horizontal component of the cutting force = $1190N$                                                                     |                                    |     |        |
|                           | •                                                                                                                                                                           |                                    |     |        |
|                           | cutting force = 1190N                                                                                                                                                       |                                    |     |        |
|                           | cutting force = 1190N  Vertical component of the cutting force = 1450N From Merchant's theory                                                                               |                                    |     |        |
| 4. a.                     | cutting force = 1190N  Vertical component of the cutting force = 1450N From Merchant"s theory calculate the various components of the cutting forces and the coefficient of | 5                                  | CO2 | K3     |

|       | 95m/min and (c) the speed corresponding to a tool life of 30 min.                     |    |     |    |
|-------|---------------------------------------------------------------------------------------|----|-----|----|
| b.    | Explain in detail Tool Wear and also factors influencing tool wear                    | 5  | CO2 | K2 |
| 5.a.  | A manufacturing company is considering two different cutting tools for a milling      | 10 | CO2 | K3 |
|       | operation on a batch of 1000 aluminium work pieces. The cutting parameters and        |    |     |    |
|       | tool data for each option are as follows: Tool life: 500 minutes, cost of tool: \$50, |    |     |    |
|       | Cutting speed: 200 m/min, Feed rate: 0.2 mm/tooth, Depth of cut: 2 mm, Total          |    |     |    |
|       | machining time per work piece: 10 minutes. Assuming an overhead cost of \$50          |    |     |    |
|       | per hour and a material cost of \$0.50 per cubic centimetre, determine which          |    |     |    |
|       | cutting tool option is more economically viable for the company                       |    |     |    |
| 6. a. | Discuss any four cutting tool materials used in metal cutting.                        | 5  | CO3 | K2 |
| b.    | Define machinability. What are the factors influencing machineability of a            | 5  | CO3 | K1 |
|       | cutting tool                                                                          |    |     |    |
| 7.a.  | Detail on the desirable properties of cutting fluids                                  | 5  | CO3 | K2 |
| b.    | Explain the geometry of a drill bit and the mechanics involved in the drilling        | 5  | CO4 | K4 |
|       | process.                                                                              |    |     |    |
| 8. a. | Compare and contrast the mechanics of plunge grinding and surface grinding            | 5  | CO4 | K5 |
|       | processes.                                                                            |    |     |    |
| b.    | Explain the relationship between milling cutter geometry and the specific             | 5  | CO4 | K2 |

life equation. Based on the equation, compute (b) the tool life for a speed of

machining operations