QP Code: RM23MTECH113 Reg.	 _						٦.

Time: 3 hrs

PART - A

GIET UNIVERSITY, GUNUPUR - 765022

AY 23

 $(2 \times 10 = 20 \text{ Marks})$

M. Tech (Second Semester) Examinations, May - 2024

MPCPE2020 - Digital Control of Power Electronic and Drive Systems (Power Electronics)

Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

Ans	wer ALL questions	CO#	Blooms Level
a.	How are power transistors utilized in circuit simulation?	CO1	K3
b.	What are the applications of circuit simulation?	CO3	K3
c.	Explain the necessity of a snubber circuit in electronic circuits.	CO1	K1
d.	What is the importance of a snubber circuit?	CO2	K1
e.	Describe how numerical methods are applied to solve DC transient analysis	CO3	K2
	problems.		
f.	Why is modeling necessary for specific circuits?	CO2	K2
g.	Can you name two applications of numerical methods in engineering?	CO1	K2
h.	What is the relation between α and β ?	CO2	K4
i.	What makes IGBT popular today?	CO1	K4
j.	What are the different components involved in simulating a bridge rectifier circuit with an R-load?	CO2	К3

PART – B (10 x 5=50 Marks)

Answe	er ANY FIVE questions	Marks	CO#	Blooms
2. a.	Can you explain the principles behind pulse-width modulation methods for voltage control, including their types and advantages in various applications?	5	CO2	Level K3
b.	How do you model the dynamic behavior of R-C and R-L-C circuits accurately, considering factors such as transient response and frequency-dependent effects?	5	CO1	K2
3.a.	What are the key aspects involved in simulating basic electric drives, including the incorporation of complex factors like motor characteristics and load dynamics?	5	CO2	K2
b.	How are pulse-width modulation methods typically implemented for voltage control in thyristor choppers, and what are the steps involved in simulating this process?		CO3	K3
4. a.	Could you elucidate the process of simulating a 3-phase IGBT circuit with an R-load, including the modeling of IGBTs and power transistors?	5	CO1	К3
b.	In the context of synchronous machines, delve into the details of state space analysis and its applications.	5	CO3	K4
5.a.	How is the modeling of SCR and TRIAC typically incorporated into circuit simulations, and what considerations are important in this process?	5	CO1	K2
b.	Can you provide a comprehensive overview of space vector representation in a 6-pulse converter operating in inverter mode with a resistive load, detailing its principles and intricacies?	5	CO3	K2
6. a.	When it comes to simulating space vector representation in various modes of operation for multi-pulse converters, what are the challenges and solutions associated with this process?	5	CO2	K4

b.	How does state space analysis apply to linear systems, and what are its	5	CO1	K4
	fundamental principles?			
7.a.	Can you elaborate on the challenges and solutions associated with simulating	5	CO2	K4
	space vector representation in various modes of operation for multi-pulse			
	converters?			
b.	What are the intricacies of modeling electric drives, particularly in incorporating	5	CO3	K4
	factors like motor characteristics and load dynamics into the simulation process?			
8. a.	How is the modeling of SCR and TRIAC typically incorporated into circuit	5	CO2	K4
	simulations, and what considerations are important in this process?			
b.	Describe the principles and advantages of using state-space analysis in the	5	CO2	K4
	control of power electronic converters, with a focus on its application in			
	improving system performance and stability.			

--- End of Paper ---