
Reg. No

M. Tech. (Second Semester) Examinations, May-2024

MPCTE2010 – Convective Heat Transfer

(HPTE)

Maximum: 70 Marks

PART – A		$(2 \times 10 = 2)$	$(2 \times 10 = 20 \text{ Marks})$	
Q1. Answer all questions		CO#	Blooms	
			Level	
a.	Explain convection.	CO1	K1	
b.	Explain two types of convection.	CO3	K3	
c.	Define Newton's law of cooling.	CO2	K1	
d.	Explain Reynold's number.	CO3	K2	
e.	Write the mass flow rate with mathematical formula .	CO4	K2	
f.	Why are heat sinks with closely packed fins not suitable for convective heat transfe although they increase the heat transfer surface area more?	r CO3	K2	
g.	Define boundary layer thickness.	CO2	K2	
h.	Explain Nusselt number.	CO2	K1	
i.	Define thermal Boundary Layer.	CO4	K1	
j.	Explain no-slip condition.	CO4	K2	

(The figures in the right hand margin indicate marks.)

PART – B

(10 x 5 = 50 Marks)

Answer ANY FIVE questions		Marks	CO#	Blooms Level
2. a.	Explain land breeze and sea breeze with the help of a diagram.	5	CO1	K2
b.	Write the advantages and disadvantages of convective heat transfer.	5	CO1	K3
3.a.	The water is flowing over the heated plate. The water has Prandtl number of 6.	5	CO2	K3
	Find the relation between velocity boundary layer thickness and thermal boundary			
	layer thickness. Explain the physical significance of Prandtl number in heat			
	transfer.			
b.	Explain drag? What causes it? Why do we usually try to minimise it?	5	CO2	K3
4. a.	A beaker filled with hot water in a room cools from 70°C to 65°C in t1 minutes,	5	CO2	K2
	65°C to 60°C in t2 minutes and from 60°C to 55°C in t3 minutes, then			
	t1 <t2<t3.explain.< td=""><td></td><td></td><td></td></t2<t3.explain.<>			
b.	For the fluid passing over the heated plate the hydrodynamic boundary layer	5	CO3	K1
	thickness at a certain point is 1.5 m. find the thickness of the thermal boundary			
	layer if the fluid has the following properties.			
	Dynamic viscosity = 0.001 Pa.s			
	Specific heat, $Cp = 1.2 \text{ KJ/Kg.K}$			
	Thermal conductivity, $K = 1.1 \text{ W/m.K}$			
5.a.	Explain flow separation? Describe the effect of flow separation on the drag	5	CO4	K1
	coefficient? How is the hydrodynamic entry length defined for flow in a tube?			
b.	Define Nusselt number. Describe Grashoff number and Stanton number?	5	CO1	K2

6. a.	Explain Stokes flow? Define Couette flow? Differentiate between a Newtonian and a non-Newtonian fluid.	5	CO2	K3
b.	Under what conditions does natural convection enhance forced convection and in	5	CO2	K2
	what conditions does it hurt forced convection? Explain the form of equation used			
	to calculate heat transfer for flow through cylindrical pipes?			
7.a.	When is natural convection negligible and when is it not negligible in forced	5	CO4	K3
	convective heat transfer? Consider laminar natural convection from a vertical hot			
	plate. Will the heat flux be higher at the top or bottom of the plate and why?			
b.	A body cools down from 50°C to 45°C in 5 minutes and then from 45°C to 40°C	5	CO4	K2
	in another 8 minutes. Determine the temperature of the surroundings?			
8. a.	Explain meant by laminar and turbulent flow?	5	CO3	K2
b.	How does surface roughness affect the heat transfer in a tube if the fluid flow is	5	CO4	K2
	turbulent? What would be the effect if the flow in the tube were laminar? Define			
	boundary layer thickness.			

--- End of Paper ---