

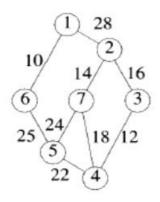
Reg.						AY 23
No						

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (Second Semester) Examinations, May - 2024

MPCCS2010 - Advance Algorithms

(CSE)


Maximum: 70 Marks

Time: 3 Hrs	Maximum: 70 Marks			
(The figures in the right hand margin indicate marks.)	Iviaximam.			
PART – A	(2 x 10 = 20 Marks)			
Q.1. Answer all questions	CO#	Blooms		
		Level		
a. Write short notes on Advanced Number Theoretic Algorithm.	CO1	K1		
b. Write short notes on DFT and FFT.	CO1	K1		
c. Enlist the difference between Big O and Little o notation.	CO1	K2		
d. What are the applications of MST?	CO1	K1		
e. What is the use of Ford-Fulkerson Method?	C01	K1		
f. How is augmenting path calculated?	CO2	K2		
g. State Chinese remainder theorem.	CO1	K1		
h. Where do we use Flayed Warshall Algorithm? Give an example.	CO2	K1		
i. Exemplify a strongly connected graph.	CO1	K2		
j. State Chinese remainder theorem	CO1	K2		

PART – B

(10 x 5=50 Marks)

Answe	Marks	CO#	Blooms	
				Level
2. a.	Explain the approximation algorithm. Is it an application of Dynamic programming?	5	CO2	K2
b.	Explain the quick sort technique with its algorithm.	5	CO2	K2
3.a.	Define minimum Spanning tree. Give minimum cost spanning tree for the following graph.	5	CO3	К3

- b. Briefly explain Asymptotic Notations.
- 4. a. Explain the cutting Rod problem. Given a table of prices pi determine the 5 CO_3 maximum revenue r_n obtainable by cutting the rod.

	Length	0	1	2	3	4	5			
	Price	0	3	5	10	12	14			
b. Recall simplex method and how it helps in linear programming.								5	CO2	K2
5.a.	5.a. What are probabilistic algorithms? Discuss four types with example.								CO1	K1
b.	Define master theorem, Solve $T(n) = 9T(n/3) + n$ using the same?								CO3	K3
б. а.	Explain briefly Edmond's Blossom algorithm to compute augmenting path.								CO1	K2
b.	Explain Edmond-Karp maximum flow algorithm with an example.								CO1	K2
7.a.	Explain Strassen's Algorithm.								CO1	K1
b.	Briefly discuss about Ford Fulkerson method to compute maximum flow problem with an example?							lem 5	CO2	K3
8. a.	Find the <30,15,5,10	optimal pa	renthesizat	ion for	the given	sequenc	e of ma	trix 5	CO3	K3
b.	Where do w	e use Fourie	r transform	in algorith	nm design?			5	CO1	K1

--- End of Paper ---

CO1 K1

K3

5