ST UNIVERSE
2
A Start AUPUR, OOS MAN
ENCELLENCE - OUR ESSENCE
2018

Time: 3Hrs

Reg. No AY 23

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (Second Semester) Examinations, May - 2024

MPCCH2053 - Bioprocess Engineering

(Chemical Engineering)

Maximum: 70 Marks

1 1110		xiiiiuiii	. /U IV	arks
(The figures in the right hand margin indicate marks.) PART – A (2 x 1				
Q.1.	Answer all questions		CO#	Blooms Level
a.	Appraise the significance of the effectiveness factor in chemical reaction engineeri	ng.	CO2	K1
b.	Categorize the epigenetic system and metabolic system in a saturated model.		CO4	K1
c.	Analyze the applications of plug flow reactor.		CO3	K2
d.	What is the role of an elicitor in plant defense mechanisms?		CO1	K3
e.	Differentiate transduction and transformation when discussing gene transfer to bact	eria.	CO3	K2
f.	How does fed-batch culture contribute to higher biomass and product yields compa	red	CO1	K4
	to traditional batch cultures?			
g.	Draw and label the parts of bubble column reactor.		CO1	K3
h.	What is microbial oxygen demand, and how does it relate to microbial activity in a		CO1	K4
	given environment?		CO4	K1
i.	What happens to the value of KLa when there is an increase in temperature?		CO4	K1 K2
j.	State down the different methods available for immobilizing bio molecules.		CO1	K2
PART – B		(10 x 5=50 Marks)		
Answ	ver ANY FIVE questions	Marks	CO#	Blooms
•		_	CO1	Level
2. a.	Estimate the theoretical growth and product yield coefficients for ethanol fermentation by S. cerevisiae, as described by the following overall reaction:	5	CO1	K2
	C6H12O6 \rightarrow 2 C2H5OH+2 CO2			
b.	Examine the theoretical predictions of yield coefficients	5	CO1	K3
3.a.	Aerobic oxidation of glucose is accompanied by microbial growth. NH4+ is used	7	CO4	K4
	as the nitrogen source and the end products are CO2 and H2O. The formula for			
	bacterial cell is C5H7NO2.Determine the coefficients for this microbial			
	conversion. Assume that 40% of total electrons are used for biosynthesis and			
	60% are used for energy generation.			
b.	Analyze the major Electron-Donor Half-Reactions of Glucose.	3	CO1	K2
4. a.	Illustrate the design aspect of continuous sterilization processes a time period	7	CO2	K2
	during which the medium is heated to the sterilization temperature, a holding			
	during which the medium is heated to the stermization temperature, a holding			

time at the desired temperature, and a cooling period to restore the medium to the fermentation temperature.

b.	Justify the major advantages of the spiral heat exchanger are:	3	CO4	K1
5.a.	Justify the Growth, Non-growth and Mixed-growth cell growth kinetics based on	7	CO3	K3
	the relationship between product synthesis and energy generation in the cell.			
b.	Describe the kinetic modelling of product production by Leudeking-Piret model	3	CO1	K4
	using carbon source			
6. a.	Describe few Significant things of concern that should be taken into account	7	CO3	K3
	while designing a fermenter.			
b.	Compare the various impellers use in bioreactors with their flow patterns.	3	CO1	K2
7.a.	Examine the thermodynamics of biological reactions where variation of reaction	7	CO1	K2
	free energies for different electron donors and acceptors takes place			
b.	Calculate the Free-energy changes in bioreactions are calculated by using the	3	CO4	K1
	formation free energies of products and reactants.			
8. a.	Formulate the Methods for Measurement of Cell Biomass and Cell Numbers for	7	CO1	K3
	unicellular organisms.			
b.	Distinguish the Four phases of the growth cycle.	3	CO2	K2

--- End of Paper ---