Reg.						AY 23
Nο						

QP Code: RM23MTECH123

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (Second Semester) Examinations, May – 2024 **MPEBT2032 - Applied Bioinformatics**

(Biotechnology)

Time: 3 Hrs Maximum: 70 Marks							
DA.	(The figures in the right hand margin indicate marks.)						
PA	RT - A	$(2 \times 10 = 20 \text{ Marks})$					
Q.1. Answer all questions				Blooms			
a.	Convert the given molecular marker into MSA		CO2	Level K 2			
	TCYGIFVL TCGIFVL SCYGIFVLSG ACGIFVLSG						
b.	What is phylogenetic? How many rooted and unrooted trees can be obtained using sequences?	five	CO2	K 2			
c.	Write the difference between the Needleman-Wunch algorithm and Smith-Waterman algorithm.	the	CO1	K 1			
d.	Find the Hamming distance between two sequence HLIKLAAIWL HLWKLAAIWA	and	CO2	K 2			
e.	How many windows are opened in Cn3D? Name them.		CO1	K 1			
f.	Write the tools for plotting protein-ligand interaction.		CO1	K 2			
g.	What is propensity of an amino acid? Write the procedure to calculate propensity va	lue.	CO3	K 2			
h.	Define a profile. What important information does a profile contain?		CO3	K 1			
i.	Draw the flow chart of molecular docking.		CO3	K 1			
j.	What is propensity? Write its signification.		CO3	K 1			
PART – B				(10 x 5=50 Marks)			
Answ	er ANY FIVE questions	Marks	CO#	Blooms Level			
2. a.	Write the storing and retrieving method of EMBL database.	5	CO1	K1			
b.	Expand PDB database discuss some menu and sub menu on PDB site with their signification and explain some data deposition tools of PDB database.	5	CO1	K1			
3.a.	Explain different layer of PIR database.	5	CO1	K1			
b.	Explain the division of KEGG database.	5	CO1	K1			
4. a.	Find the BLOSUM value of the given block AAI SAL TAL TAV AAL	5	CO2	K2			

b.	Find the optimal alignment and alignment score of two sequences AATTCGCGTA and TATCGCTACA by using dot matrix algorithm.	5	CO2	K2
5.a.	Design a phylogenetic tree by using UPGMA method.	5	CO2	K2
	A B C D			
	A 0			
	B 8 0			
	C 7 9 0			
	D 12 14 11 0			
b.	Suppose there are 20,000aminoacid in the database of which 2000 are serin and		CO2	K2
	there are 5000 amino acid in helical conformation of which 500 are serin .calculate	;		
	the type of information.	_	G0.	
6. a.	Design a HMM of the given MSA	5	CO2	K2
	VGAH VN			
	VEAD			
	VKG			
	VYST			
	FNA N			
	IAGADN			
b.	Explain windows of Swiss PDB viewer.	5	CO2	K1
7.a.				K1
	MDS	_		***
b.	What is protein stability? How the protein stability are estimated?	5	CO3	K1
8. a.	Explain the computational method of Drug design.	5	CO3	K1
b.	Explain the steps involve in Homology modelling.	5	CO3	K1

--- End of Paper ---