QPC:	RJ23MTECH085
------	--------------

Time: 3 hrs

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

M. Tech (First Semester) Examinations, January - 2024

MPEVL1031- Analog IC Design

(VLSI Design)

Maximum: 70 Marks

AY 23

(The figures in the right hand margin indicate marks.)						
PART – A		(2 x 10 = 20 Marks)				
Q1	Answer all the Questions	CO#	Blooms Level			
a.	What is high-speed op-amp?	C01	K3			
b.	What is the structure of a MOSFET and its VI characteristic?	CO2	K 1			
c.	What is the Miller effect?	CO3	K3			
d.	What is Analog IC Design?	CO4	K1			
e.	Differentiate between Basic, Cascode and Active current mirrors.	CO3	K3			
f.	What is the slew rate of an OP-amp?	CO2	K 1			
g.	Differentiate between differential amplifier and multistage amplifier.	CO1	K3			
h.	Why do op-amps fail at high frequency?	CO4	K 1			
i.	What is MOS?	CO1	K3			
j.	What is the feedback topology of an op-amp?	CO2	K1			

PART – B

(10 x 5=50 Marks)

Answer ANY FIVE questions		Marks	CO#	Blooms
				Level
2. a.	Describe the feedback topology of an operational amplifier, emphasizing its role in	5	CO1	K2
	enhancing performance and stability.			
b.	Compare and contrast the characteristics of PMOS and NMOS transistors,	5	CO1	K4
	considering their strengths and weaknesses in electronic circuit applications.			
3.a.	Explore the distinctions between Source-Insensitive Biasing (SIB) and	5	CO2	K2
	Temperature-Insensitive Biasing (TIB) in amplifier circuits, discussing their			
	respective advantages and limitations.			
b.	Write a comprehensive note comparing one-stage and two-stage operational	5	CO2	K2
	amplifiers, considering their advantages, disadvantages, and typical applications.			
4. a.	Explain the four ideal parameters of an operational amplifier, discussing common	5	CO3	K1
	characteristics that contribute to ideal op-amp behavior.			
b.	Explain the differences between Cascode and Wilson Current Mirrors, highlighting	5	CO3	K2
	their respective advantages and applications.			

5.a.	Provide insights into the purpose and function of a current mirror in amplifier	5	CO4	K3
	design, discussing how it contributes to maintaining current consistency.			
b.	Explain the factors contributing to noise in operational amplifiers, and discuss	5	CO4	K2
	techniques to mitigate noise in amplifier designs.			
6. a.	Describe the Common-Mode Rejection Ratio (CMRR) in the context of operational	5	CO2	K4
	amplifiers, discussing its importance in minimizing unwanted signal components.			
b.	Provide an in-depth explanation of MOS I/V characteristics, outlining the voltage-	5	CO3	K2
	current relationship and key features of Metal-Oxide-Semiconductor devices.			
7.a.	Explore the significance of trans-impedance amplifiers in MOS circuits, describing	5	CO2	K4
	their applications and advantages in specific electronic designs.			
b.	Write a comprehensive note on the Cascode Stage, delving into its structure,	5	CO2	K2
	operation, and practical applications in amplifier circuits.			
8. a.	Discuss the operational principles of CS (Common-Source) and CG (Common-	5	CO1	K2
	Gate) amplifiers, highlighting their key characteristics and use cases.			
b.	Elaborate on the concept of a multistage amplifier, discussing its significance and	5	CO2	K1
	providing insights into its design considerations.			

--- End of Paper ---