| Reg. |  |  |  |  |  |
|------|--|--|--|--|--|
| To   |  |  |  |  |  |

AY 23

 $(2 \times 10 = 20 \text{ Marks})$ 



PART - A

QP Code: RJ23MTECH023

## GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (First Semester) Examinations, January - 2024

## **MPCCH1050 - Advanced Separation Processes**

(Chemical Engineering)

Time: 3Hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

| Q.1. Answer all questions |                                                                                    | C     | O#  | Blooms          |  |  |  |
|---------------------------|------------------------------------------------------------------------------------|-------|-----|-----------------|--|--|--|
|                           |                                                                                    |       |     | Level           |  |  |  |
| a.                        | What is Osmotic Pressure? How osmotic pressure is related to concentration?        | (     | CO2 | K2              |  |  |  |
| b.                        | Differentiate between Observed retention and Real retention.                       | •     | CO1 | K1              |  |  |  |
| c.                        | Draw a typical molecular cut off curve of a membrane.                              | •     | CO3 | K1              |  |  |  |
| d.                        | Draw the Sharp and diffused molecular cut off curves of a membrane.                | •     | CO2 | K2              |  |  |  |
| e.                        | Define Membrane Permeability.                                                      | •     | CO3 | K2              |  |  |  |
| f.                        | What is Membrane Casting? What are the Common polymeric membrane materials         | is    | CO2 | K1              |  |  |  |
|                           | used for the casting process?                                                      |       |     |                 |  |  |  |
| g.                        | Differentiate between Homogeneous barrier and Micro porous Barrier.                | •     | CO4 | K1              |  |  |  |
| h.                        | What are the different types of motion of molecules through barrier?               | •     | CO3 | K2              |  |  |  |
| i.                        | What is the transport mechanism, Pressure, Pore size, Molecular weight is maintain | ed '  | CO2 | K2              |  |  |  |
|                           | for Small solute particles to be separated by Reverse Osmosis.                     |       |     |                 |  |  |  |
| j.                        | What is the transport mechanism, Pressure, Pore size, Molecular weight is maintain | ed '  | CO2 | K1              |  |  |  |
|                           | for Red blood cells to be separated by Ultrafiltration?                            |       |     |                 |  |  |  |
| PΔ                        | PART – B (10 x 5=50 Marks)                                                         |       |     |                 |  |  |  |
| IARI - D                  |                                                                                    |       |     | •               |  |  |  |
| Answ                      | rer ANY FIVE questions                                                             | Marks | CO# | Blooms<br>Level |  |  |  |
| 2. a.                     | Discuss about the Membranes for Gas and Vapor Separation.                          | 4     | CO1 | K1              |  |  |  |
| b.                        | How Pervaporation and membrane distillation (MD) are distinguished from the        | 6     | CO2 | K2              |  |  |  |
|                           | other synthetic membrane separation processes with respect to phase change,        |       |     |                 |  |  |  |
|                           | from liquid to vapor?                                                              |       |     |                 |  |  |  |
| 3.a.                      | Design the solution diffusion model for RO/NF where the solute flux through the    | 4     | CO2 | K2              |  |  |  |
|                           | membrane is considered in realistic situation.                                     |       |     |                 |  |  |  |
| b.                        | Demonstrate the Modified solution diffusion model for RO/NF.                       | 6     | CO1 | K1              |  |  |  |
| 4. a.                     | Design the Kedem-Katchalsky equation for Ultrafiltration in case of imperfect      | 4     | CO4 | K1              |  |  |  |
|                           | retention of the solutes by the membrane by a reflection coefficient.              |       |     |                 |  |  |  |
|                           |                                                                                    |       |     |                 |  |  |  |

| b.    | Demonstrate the Modified solution diffusion model for Ultra Filtration.           | 6 | CO2 | K2 |
|-------|-----------------------------------------------------------------------------------|---|-----|----|
| 5.a.  | List out the different driving force of transport of species.                     | 5 | CO4 | K2 |
| b.    | Enumerate the description of transport process by phenomenological equation.      | 5 | CO2 | K3 |
| 6. a. | Discuss the two main geometries by which Synthetic membranes are fabricated.      | 4 | CO4 | K2 |
| b.    | Enumerate about the detail steps for Phase Inversion Technique for Preparation    | 6 | CO3 | K2 |
|       | of Integrally Skinned Asymmetric Membranes.                                       |   |     |    |
| 7.a.  | What is the importance of Membrane modules in advance separation process?         | 4 | CO4 | K2 |
| b.    | Describe the working mechanism, design and characteristics of                     | 6 | CO4 | K1 |
|       | (i) plate and frame module, (ii) hollow fiber module, (iii) spiral wound and (iv) |   |     |    |
|       | tubular Modules in order to provide maximum membrane area in relatively           |   |     |    |
|       | smaller volume to get maximum permeate flux.                                      |   |     |    |
| 8. a. | What are the different steps for Preparation of Composite Membranes?              | 4 | CO2 | K2 |
| b.    | How to modify the membrane surface, aimed at prevention of contaminant            | 6 | CO2 | K1 |
|       | deposition and maintenance of high flux.                                          |   |     |    |

--- End of Paper ---