Reg.

Time: 3 Hrs

 $\mathbf{PART} - \mathbf{A}$

GIET UNIVERSITY, GUNUPUR – 765022

M. Tech (First Semester) Examinations, January – 2024

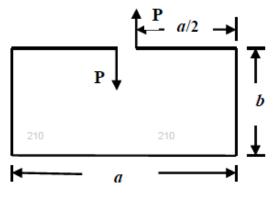
MPEMD1044 - Advanced Mechanics of Solids

(Machine Design)

Maximum: 70 Marks

AY 23

(The figures in the right hand margin indicate marks.)


$(2 \times 10 = 20 \text{ Marks})$

Q.1. Answer all questions		CO#	Blooms
			Level
a.	Differentiate between thick and thin cylinder.	CO3	K1
b.	State maximum strain theory.	CO4	K1
c.	Define stress concentration factor.	CO2	K1
d.	State two assumptions of bending as per Winkler-Bach's theory.	CO2	K1
e.	State and explain Castigliano's theorem.	CO1	K2
f.	State maximum principal stress theory.	CO4	K1
g.	Define shear centre.	CO3	K1
h.	Draw the stress strain curve for mild steel showing the salient features.	CO1	K1
i.	What do you understand by the term unsymmetrical bending.	CO4	K1
j.	Explain Goodman's law. Where it is used?	CO4	K2

$\mathbf{PART} - \mathbf{B}$

(10 x 5=50 Marks)

Answer ANY FIVE questions		CO#	Blooms
			Level
2. Derive the equations for circumferential and radial stress developed in thick walled	10	CO1	K2
cylinder under plane stress condition subjected to external and internal pressure			
with boundary conditions. Assume proper symbols of the variables used.			
3. A solid aluminium shaft 1 m long and of 50 mm diameter is to be replaced by a	10	CO1	K2
hollow shaft of the same length and same outside diameter, so that the hollow shaft			
could carry the same torque and has the same angle of twist. What must be the			
inner diameter of the hollow shaft? Take modulus of rigidity for the aluminium as			
28 GPa and that for steel as 85 GPa.			
4. Determine by energy method the deflection of the tip of the linearelastic cantilever	10	CO2	K3
beam shown in Fig.1 as a result of the point force P.			

5.	A solid steel shaft of 60 mm diameter is to be replaced by a hollow steel shaft of	10	CO2	K3
	the same material with internal diameter equal to half of the external diameter.			
	Find the diametres of the hollow shaft and saving in material, if the maximum			
	allowable shear stress is same for both shafts.			
6.	Following unit elongation were measured with a rectangular strain rosette:	10	CO3	K3
	$e_0=3x10^{-4}$, $e_{45}=-4x10^{-4}$, $e_{90}=5x10^{-4}$. Determine the principal strain and their			
	directions.			
7.	A closed ring of the mean radius of curvature 100mm is subjected to a pull of 4	10	CO3	K3
	KN. The line of action of the load passes through the centre of the ring. Calculate			
	the maximum tensile and compressive stresses in the material of the ring, if the			
	ring is circular in cross section with a diameter equal to 20mm.			
8. a.	Using Prandtl's stress function method derive the expression for (i) twist per unit	5	CO4	K3
	length, (ii) torsional rigidity and (iii) the resultant stress for elliptical cross section			
	under torsion.			
b.	Starting from first principles, demonstrate that the St. Venant's warping function	5	CO4	K2
	(ψ) should obey the Laplace's equation, $\nabla^2 \psi = 0$.			

--- End of Paper ---