Reg.

No

GIET UNIVERSITY, GUNUPUR – 765022 M. Tech (First Semester) Examinations, January – 2024 MPCSE1010 - Theory of Elasticity and Plasticity (Structural Engineering)

Time: 3 Hrs

 $\mathbf{PART} - \mathbf{A}$

Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

$(2 \times 10 = 20 \text{ Marks})$

Q.1. Answer all questions		CO#	Blooms
			Level
a.	Define spherical and deviator stress tensor.	CO1	K1
b.	State generalized Hooke's law.	CO1	K1
c.	Explain octahedron stresses.	CO2	K2
d.	State maximum strain energy theory.	CO2	K2
e.	What do you mean by torsional rigidity?	CO2	K1
f.	What do you mean by rigidity?	CO3	K1
g.	Write the formula for shafts of uniform cross-section.	CO3	K1
h.	What do you mean by complimentary stress?	CO4	K1
i.	What is the utility of polar coordinates?	CO4	K1
j.	Give the Green's Formula.	CO1	K1

PART - B

(10 x 5=50 Marks)

Answer ANY FIVE questions		Marks	CO#	Blooms
				Level
2. a.	Derive the stress distribution in a thick cylinder by using elasticity.	5	CO1	K2
b.	Draw three dimensional bodies showing all components of stress.	5	CO1	K2
3.a.	Derive the compatibility equation in terms of stress for three dimensional elastic	5	CO1	K2
	body.			
b.	What are the conditions of compatibility?	5	CO1	K1
4. a.	State plane stress and plane strain. Discuss the plane stress and plane strain for	5	CO2	K3
	two dimensional problems with illustrations.			
b.	Find the expression for the normal and shear for a circular disc subjected to	5	CO2	K3
	compression along the diameter.			
5.a.	Using Fourier Integral method, determine the solution of biharmoic equation in	5	CO2	K3
	Cartesian Coordinates.			
b.	Describe the deflection equation for the bending of a cantilever loaded (point	5	CO2	K2

AY 23

load) at the end in terms of Cartesian coordinates.

б. а.	Explain boundary value problem.	5	CO3	K2
b.	Derive Maxwell stress functions.	5	CO3	K2
7.a.	State the theories of failure with examples.	5	CO4	K4
b.	Derive stress function in terms of x and y in absence of body force.	5	CO4	K4
8. a.	Develop the differential equation of equilibrium in three dimension of a	5	CO4	K2
	rectangular element.			
b.	Explain Principal stress theory.	5	CO4	K2

--- End of Paper ---