| Reg. |  |  |  |  |  | AY 23 |
|------|--|--|--|--|--|-------|
| No   |  |  |  |  |  |       |



Time: 3 hrs

PART – A

# **GIET UNIVERSITY, GUNUPUR – 765022** M. Tech (First Semester) Examinations, January – 2024

MPCVL1010- Semiconductor Devices

(VLSI Design)

Maximum: 70 Marks

## (The figures in the right hand margin indicate marks.)

### $(2 \times 10 = 20 \text{ Marks})$

| Q.1. | Answer all questions                                                               | CO# | Blooms |
|------|------------------------------------------------------------------------------------|-----|--------|
|      |                                                                                    |     | Level  |
| a.   | What is the working principle of MOS capacitor?                                    | CO1 | K1     |
| b.   | What is schottky barrier mechanism?                                                | CO1 | K2     |
| c.   | What is PN junction and its characteristics?                                       | CO1 | K2     |
| d.   | What is the snapback breakdown mechanism?                                          | CO2 | K1     |
| e.   | What is the difference between a primitive cell and unit cell?                     | CO3 | K2     |
| f.   | What is the meaning of hetero junction?                                            | CO2 | K1     |
| g.   | What is the difference between forward and reverse bias?                           | CO1 | K3     |
| h.   | What is the difference between a lattice and crystal?                              | CO4 | K1     |
| i.   | What is the principle of AC DC conversion?                                         | CO3 | K3     |
| j.   | What is the difference between zero-dimensional, one-dimensional, two-dimensional, | CO4 | K1     |
|      | and three-dimensional defects in a semiconductor?                                  |     |        |

### PART – B

#### (10 x 5=50 Marks)

| Answer ANY FIVE questions |                                                                                      |   | CO# | Blooms |
|---------------------------|--------------------------------------------------------------------------------------|---|-----|--------|
|                           |                                                                                      |   |     | Level  |
| 2. a.                     | Compare and contrast the characteristics of P-type and N-type semiconductor          | 5 | CO1 | K2     |
|                           | junctions. Provide insights into their respective behaviours and applications.       |   |     |        |
| b.                        | Illustrate the detailed structure of a HEMT (High Electron Mobility Transistor) and  | 5 | CO1 | K3     |
|                           | discuss its key features that make it suitable for specific electronic applications. |   |     |        |
| 3.a.                      | Elaborate on the distinctions between forward bias and reverse bias in               | 5 | CO2 | K2     |
|                           | semiconductor devices. Explain the effects of these biases on device behaviour.      |   |     |        |
| b.                        | Provide a comprehensive explanation of the primitive cell in crystallography,        | 5 | CO2 | K4     |
|                           | outlining its significance in understanding the structure of crystalline materials.  |   |     |        |
| 4. a.                     | Explore the different types of metal-semiconductor junctions, and classify them      | 5 | CO3 | K2     |
|                           | based on their characteristics. Highlight their applications in electronic devices.  |   |     |        |

| b.    | Examine the fundamental differences between a lattice and a crystal, emphasizing     | 5 | CO3 | K2 |
|-------|--------------------------------------------------------------------------------------|---|-----|----|
|       | their roles in the context of material science and semiconductor physics.            |   |     |    |
| 5.a.  | Define and expound upon the concept of base narrowing in semiconductor devices.      | 5 | CO4 | K1 |
|       | Discuss its implications for device performance and functionality.                   |   |     |    |
| b.    | Investigate the snapback breakdown mechanism in semiconductor devices,               | 5 | CO4 | K2 |
|       | detailing the conditions under which it occurs and its impact on device reliability. |   |     |    |
| 6. a. | Analyze the characteristics of ohmic contact IV (current-voltage) in semiconductor   | 5 | CO2 | K3 |
|       | devices, elucidating their significance in the context of device functionality.      |   |     |    |
| b.    | Craft a detailed note on the Gummel-Poon model, exploring its principles,            | 5 | CO3 | K2 |
|       | applications, and relevance in semiconductor device modelling.                       |   |     |    |
| 7.a.  | Compare and contrast the Ebers-Moll model with the Gummel-Poon model,                | 5 | CO2 | K4 |
|       | highlighting their respective advantages and limitations in semiconductor device     |   |     |    |
|       | analysis.                                                                            |   |     |    |
| b.    | Delve into the working principle of a MOS (Metal-Oxide-Semiconductor)                | 5 | CO2 | K2 |
|       | capacitor, explaining how it functions and its role in semiconductor devices.        |   |     |    |
| 8. a. | Provide a thorough explanation of the PN Junction diode, covering its IV             | 5 | CO1 | K3 |
|       | characteristics and discussing the applications and significance of these            |   |     |    |
|       | characteristics.                                                                     |   |     |    |
| b.    | Explore the Schottky barrier mechanism in semiconductor devices, and elucidate       | 5 | CO2 | K2 |
|       | its applications and importance in electronic components.                            |   |     |    |

--- End of Paper ---