Reg.						AY 23
No						

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022 M. Tech (First Semester) Examinations, January – 2024 MPCPE1020 – Modeling and Analysis of Electrical Machines

(Power Electronic	s)
-------------------	----

(The figures in the right hand margin indicate marks.)

Maximum: 70 Marks

PART – A (2 x 10					
Q.1	Answer all questions				
				Level	
a.	How does an increase in excitation affect the operation of an alternator connected to infinite bus-bars?				
b.	What steps should be taken before disconnecting an alternator from parallel operation?				
c.	What is the necessity for predetermining voltage regulation?				
d.	How does a change in excitation affect load sharing?				
e.	What are the advantages and disadvantages of estimating the voltage regulation of alternator by the EMF method?	of an	CO3	K2	
f.	What is meant by infinite bus-bars?		CO2	K1	
g.	Why is the MMF method considered the optimistic method for estimating volregulation?	ltage	CO1	K3	
h.	What are the advantages of a cage motor?				
i.	How is synchronous impedance calculated from open-circuit characteristics (OCC)) and	CO3	K3	
	short-circuit characteristics (SCC)?				
j.	What are the various methods for predetermining the voltage regulation of a 3-p	hase	CO1	K1	
	alternator?				
PART – B (10 x 5:					
Answe	er ANY FIVE questions	Marks	CO#		
2. a.	What are the measures taken to improve the efficiency of modern high-efficiency induction motors?	5	CO1	Level K2	
b.	Why does an alternator's voltage drop sharply when loaded with a lagging load?	5	CO1	K3	
3.a.	How is the terminal voltage of an induction generator operating alone controlled?	5	CO2	K2	
b.	What is the relationship between electrical frequency and magnetic field speed in an AC machine?	5	CO2	K4	

4. a. What conditions are necessary for paralleling two synchronous generators? 5 CO3 K2

b.	Why does an alternator's voltage increase when loaded with a leading load?	5	CO3	K2
5.a.	What do starting code factors indicate about the starting current of an induction	5	CO4	K1
	motor?			
b.	What are the advantages and disadvantages of brushless DC motors compared to	5	CO4	K2
	conventional brushed DC motors?			
6. a.	Why does switching the current flows in any two phases reverse the rotation	5	CO2	K3
	direction of a stator's magnetic field?			
b.	What is the equation for induced torque in an AC machine?	5	CO3	K2
7.a.	What limits the operating range of terminal voltage speed control?	5	CO2	K4
b.	Why is overheating a serious concern for generators?	5	CO2	K2
8. a.	What is the optimal phase spacing for a reluctance-type stepper motor?	5	CO1	K3
b.	Sketch the phasor diagrams and magnetic field relationships for a synchronous	5	CO2	K2
	generator operating at unity, lagging, and leading power factors.			

--- End of Paper ---