Reg.			
N T			

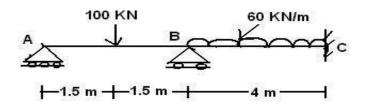
QP Code: RJ23MTECH055

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (First Semester) Examinations, January – 2024

MPESE1031 - Matrix Method of Analysis of Structures

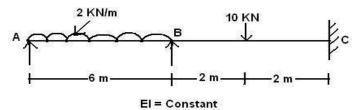
(Structural Engineering)


Time: 3 Hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

PART – A		$(2 \times 10 = 20 \text{ Marks})$		
Q.1. Answer all questions		CO#	Blooms	
			Level	
a.	Why flexibility method is also called as compatibility method or force method?	CO1	K1	
b.	What is transformation Matrix?	CO1	K1	
c.	Define plastic modulus.	CO2	K2	
d.	What do you mean by kinematic indeterminacy?	CO2	K2	
e.	Explain characteristics of stiffness and flexibility matrix.	CO2	K1	
f.	List various assumptions made in Euler's formula.	CO3	K1	
g.	What do you mean by degree of external indeterminacy?	CO3	K1	
h.	Define stiffness coefficient 'kij'	CO4	K1	
i.	Write a note on element stiffness matrix.	CO4	K1	
j.	List out the properties of rotation matrix	CO1	K1	

PART – B (10 x 5=50 Marks)


Answer ANY FIVE questions			CO#	Blooms
				Level
2. a.	Compare flexibility method and stiffness method.	5	CO1	K2
b.	List out the advantages of FEA.	5	CO1	K2
3.a.	Analyse the continuous beam shown in figure using force method	5	CO1	K2

b. Write down the various steps for flexibility method.

5 CO1 K1

4. a.

Analyse the continuous beam ABC shown in figure by flexibility matrix method and sketch the bending moment diagram.

b. Analyse the continuous beam ABC shown in figure by flexibility matrix method 5 CO2 and sketch the bending moment diagram .

CO₂

CO2

CO2

CO4

CO4

5

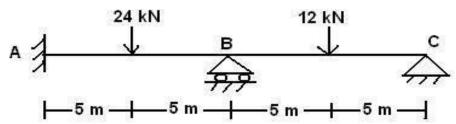
5

K4

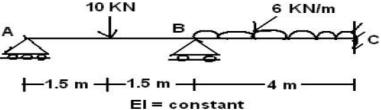
K4

5

5

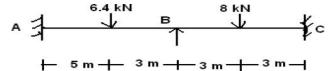

5

K3

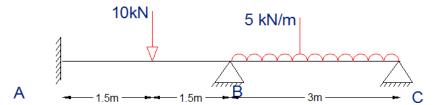

K3

K3

K2



- 5.a. Discuss about Degree of Freedom and explain its types.
 - b. What are the properties which characterize the structure response by means of force-displacement relationship.
- 6. a. Analyze the continuous beam ABC shown in figure by stiffness method and also 5 CO3 K2



sketch the bending moment diagram

b. Analyze the continuous beam shown in figure using displacement method. Draw 5 CO3 K2 the shear force and bending moment

- 7.a. Write short note on advantage of matrix method.
 - b. Write short note on stiffness coefficients.
- 8. a. Analyse the continuous beam ABC shown in fig by stiffness matrix method and 10 CO4 K2 draw the bending moment diagram.

