Reg.					
No					

AY 23

Time: 3Hrs

PART – A

GIET UNIVERSITY, GUNUPUR - 765022 M. Tech (First Semester) Examinations, January- 2024 MPCCH1040 - Mathematical and Statistical Methods in Chemical Engineering (Chemical Engineering) Maximum: 70 Marks (The figures in the right hand margin indicate marks.) (2 x 10 = 20 Marks)

I I I		A 10 – 20	iviai Ko)					
Q.1.	Answer all questions	CO#	Blooms					
			Level					
a.	Explain about classification of 2 nd order P.D.E	CO2	K2					
b.	Define Rayleigh Quotient.	CO1	K1					
c.	c. Check the nature of the equation $2U_{xx} + 5U_{xy} - 3U_{yy} + 4U_x + 5 = 0$							
d.	d. What is bender-Schmidt explicit formula							
e.	Give any two examples of elliptic equation.	CO3	K2					
f.	Find f (2.5) from the data using piecewise linear interpolation.	CO2	K1					
	X: 1 2 3							
	F(x) 0 1 8							
g.	If $Y(X_{i-1})=Y_{i-1}$ and $Y(X_i)=Y_i$. Write down the piecewise cubic spline interpolation	CO4	K1					
	formula for Y(X) Valid in $X_{i-1} \leq X \leq X_{i}$.							
h.	What are hermites's interpolating conditions?	CO3	K2					
i.	What is piecewise interpolation and what is the advantages of it ?	CO2	K2					
j.	What is interpolation? What is the difference between interpolation and extrapolation?	CO2	K1					
$PART - B \tag{10 x 5 = 5}$								
Answ	ver ANY FIVE questions	larks CO#	Blooms					
			Level					
2.	Analyze the following set of three linear algebraic equations in three variables	10 COI	K1					
	using the Gauss–Seidel method:							

$$10X_1 + X_2 + 2X_3 = 44$$

 $2X_1 + 10X_2 + X_3 = 51$
 $X_{1+} 2X_{2+} 10X_{3} = 61$

3. Analyze the following set of three linear algebraic equations in three variables 10 CO2 K2 using the Gauss Elimination method:

$$3X_1 + X_2 - 2 X_3 = 9$$
$$-X_1 + 4X_2 - 3X_3 = -8$$

4. Evaluate the values of x and y that satisfy the following two nonlinear algebraic 10 CO4 K1 equations:

CO4

CO4

K2

K2

10

10

K2

$$f(x, y) = e^{x} + xy - 1 = 0$$

 $g(x, y) = sinxy + x + y - 1 = 0$

5. Consider stirred vessels which initially contain 760 kg of solvent at 25°C.12 kg/min of solvent flows into the stirred vessels at 25°C and exits out also at the same rate. At t = 0 the flow of steam is started in a coil in the stirred vessels. The heat supplied by steam to the solvent is given by Q = UA ($T_S - T$), where UA is the overall heat transfers coefficient multiplied by coil area through which heat exchange takes place and T_S is the temperature of steam and is 150°C. UA = 11.5 kJ/Min-K. The Specific heat of the solvent is Cp = 2.3 kJ/kg-K.

Show that
$$\frac{dT}{dt}(\circ C/s) = 0.023 - 0.000373T$$

Determine the solvent temperature after 50 min. Also determine the maximum temperature that can be reached in the tank. The Specific heat of the solvent is Cp = 2.3 kJ/kg-K

6. Solve the following ordinary differential equations:

$$\frac{dy}{dx} = z \,, \ \frac{dz}{dx} = -y$$

With the initial condition y (0) = 2, z (0) = 1. Determine the value of y and z at x =3. Compare the numerical solution with the analytical solution. The analytical solution of the given differential equations is $y = Asin(x + \alpha)$ and $z = Acos(x + \alpha)$.

7. Consider 1-dimensional steady state conduction without heat generation taking 10 CO4 place in a rectangular slab. The temperature of the left side of the slab is 100°C and of the right side is 200°G. The length of the slab is 10 cm and the thermal conductivity of the slab is 120 W/Cm-K. Make nine uniform divisions.

The governing equation is $k \frac{d^2 T}{dx^2} = 0$

8. Using the Runge–Kutta fourth order method ,Integrate the ordinary equation 10 CO2 K2

$$\frac{dx}{dy} = x + y$$

The initial condition is: at x = 0, y = 0. Determine the value of y at x = 0.2. The analytical solution is given by $y = e^x - x - 1$.