

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

M. Tech (First Semester) Examinations, January-2024

MPEMD1034 – Fatigue, Creep & Fracture (MD/MFT)

Time: 3 hrs

Maximum: 70 Marks

AY 23

PART – A		(2 x 10 = 20 Marks)	
Q.1. Answer all questions		CO#	Blooms
			Level
a.	Differentiate between Goodman and Soderberg curves.	C01	K2
b.	Distinguish between "stress concentration factor" and "stress intensity factor"?	CO1	K2
c.	Define low cycle and high cycle fatigue?	CO4	K1
d.	What do you mean by creep rate?	CO2	K1
e.	Explain the phenomenon of creep in metals.	CO2	K2
f.	How does a continuous system differ from a discrete system in the nature of its	CO3	K2
	equation of motion?		
g.	What are the disadvantages of using LEFM theory?	CO4	K2
h.	What is Fretting Fatigue?	CO4	K1
i.	State the basic characteristics of ductile fracture.	CO3	K1
j.	What is meant by "change in compliance approach"?	CO3	K1

(The figures in the right hand margin indicate marks.)

PART – B

(10 x 5=50 Marks)

Answer ANY FIVE questions		Marks	CO#	Blooms
		IVIATKS	04	Level
2. a.	A hot rolled steel shaft is subjected to a torsional moment that varies from 330 N-			
	m clockwise to 110 N-m counter clockwise and an applied bending moment at a			
	critical section varies from 440 N-m to -220 N-m. The shaft is of uniform cross-			
	section and no keyway is present at the critical section. Determine the required	6	CO1	K3
	shaft diameter. The material has an ultimate strength of 550 MN/m2 and a yield			
	strength of 410 MN/m2. Take the endurance limit as half the ultimate strength,			
	factor of safety of 2, size factor of 0.85 and a surface finish factor of 0.62.			
b.	What are the different factors to be considered while designing machine parts to avoid fatigue failure?	4	CO1	K2

3.a.	A machine component is subjected to a flexural stress which fluctuates between	10	CO1	K3
	+300MN/m ² and -150 MN/m ² . Determine the value of minimum ultimate strength			
	according to:			
	(i) Gerber relation (ii) Modified Goodman relation (iii) Soderberg relation			
4. a.	Explain the mechanism of creep deformation.	5	CO2	K 1
b.	Explain briefly Primary secondary and territory creep.	5	CO2	K2
5.a.	Distinguish between LEFM and EPFM.	5	CO4	K2
b.	Describe the creep phenomenon for high temperature bolting design in pressure vessels.	5	CO4	K2
6. a.	Explain Griffith theory of brittle fracture.	5	CO3	K1
b.	Derive the Griffith equation for fracture stress in a plain stress and plain strain condition.	5	CO3	K3
7.a.	What advantages does a fracture mechanics approach over traditional approaches for a design?	5	CO3	K2
b.	What do you mean by linear elastic fracture mechanics? Derive an equation for stress intensity factor.	5	CO3	K2
8. a.	Write down the creep stress time relations for simple tension considering different methods for short time and long time.	10	CO2	K3

--- End of Paper ---