Reg.					
No					

GIET UNIVERSITY, GUNUPUR - 765022 M. Tech (First Semester) Examinations, January - 2024 MPCSE1020 - Elastic Stability and Behavior of Metal Structures (Structural Engineering)

AY 23

Time		Maximu	faximum: 70 Marks			
	(The figures in the right hand margin indicate marks.)					
PAI	(2 x 10	(2 x 10 = 20 Marks)				
Q.1.	Answer all questions	C	D#	Blooms		
				Level		
a.	List the types of structural failure.	(201	K1		
b.	What are the approaches to stability analysis?	(201	K1		
c.	Draw & label the mode shape of buckling.	(203	K1		
d.	What is meant by elastically restrained column?	(203	K2		
e.	Illustrate the modes of buckling in frames.	(CO1	K2		
f.	Outline beam column interaction equation.	(CO1	K4		
g.	What is reserve strength?	(203	K3		
h.	Define Shear centre.	(201	K3		
i.	Identify the factors affect the lateral buckling strength of beam.	(201	K4		
j.	Explain inelastic buckling.	(CO3	K2		
PAI	PART – B			larks)		
Answer ANY FIVE questions		Marks	CO#	Blooms		
				Level		
2. a.	Find the elastic buckling load of cantilever column using fourth order differential equation of beam column.	15	CO2	K3		
b.	State the necessary and sufficient conditions for general collapse condition of a structure	u 5	CO2	K4		
3.a.	Derive the differential equation of beam column with continuous lateral load.	5	CO2	K2		
b.	Derive the deflection curve of beam column with end moments	5	CO1	K4		
4. a.	Develop the differential equation for maximum deflection and maximum	n 5	CO1	K2		
	bending moment in case of beam column with central load					
b.	Assess differential equation for beam column	5	CO1	K3		
5.a.	Defend the approximate methods used in the stability analysis and discuss their	r 5	CO1	K4		
	merits.					

QP Code:		Reg. No											AR 22	
												-		
b.	Explain the failure of b	eam colum	ıs.								5	CO3	K2	
6. a.	Discuss the differential equation for lateral buckling of cantilever beam.									5	CO1	K4		
b.	Derive the differential equation of beam column with continuous lateral load.									5	CO3	K2		
7.a.	Find out the critical stress and critical moment for an I beam subjected to couples									5	CO3	K4		
	at end.													
b.	A thin walled bar of open cross section is subjected to couples at the end. Derive							5	CO2	K2				
	the expression for warping displacement.													
8. a.	Find the ultimate load for propped cantilever beam of span 'l' subjected to udl of								5	CO3	K3			
	w/m													
b.	Calculate the shape factor of circular cross section.								5	CO3	K2			

--- End of Paper ---