Reg.					
Nο					

QP Code: RJ23MTECH063

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (First Semester) Examinations, January - 2024 MPECS1045 - Data Mining and Data Warehousing

(CSE)

AY 23

CO2

5

K2

Tim	e: 3Hrs	Maxim	um: 70	0 Marks
	(The figures in the right hand margin indicate marks.)			
PA	RT - A	(2 x 10	= 20 1	Marks)
Q.1.	Answer all questions	C	О#	Blooms
				Level
a.	How is data warehouse different from database? How are they similar?	(CO1	K2
b.	Explain the difference between OLAP and OLTP.	(CO1	K2
c.	Define frequent patterns in the context of data mining.	(CO1	K2
d.	Explain the ETL process in the context of data warehousing.	(CO2	K2
e.	What is the primary goal of classification in data mining?	(CO3	K2
f.	What is the fundamental idea behind hierarchical clustering?	(CO2	K2
g.	What is the role of training and testing datasets in classification?	(CO2	K2
h.	What are the challenges associated with mining time series data?	(CO3	K2
i.	What is web mining, and how does it contribute to data mining?	(CO3	K2
j.	Explain the challenges associated with mining unstructured data from the web.	(CO4	K2
P	ART – B	(10 x 5	=50 M	larks)
Answ	ver ANY FIVE questions	Marks	CO#	Blooms
2. a.	Explain the steps of KDD, with the help of a diagram.	5	CO1	Level K2
b.	There are five transactions (T1, T2, T3, T4, T5) with items (A, B, C, D)	5	CO2	K4
	purchased as T1(B, C), T2(A, C, D), T3(B, C), T4(A, B, C, D), T5(B, D). The			
	min_sup=2. Show how Apriori Rule Mining Algorithm can generate the			
	association rule for the above dataset.			
3.a.	Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):	5	CO2	K4
	(a) Compute the Euclidean distance between the two objects.			
	(b) Compute the Manhattan distance between the two objects.			
	(c) Compute the Minkowski distance between the two objects, using $q = 3$.			
	(d) Compute the supremum distance between the two objects			
_			~~*	***

b. Explain the importance of LIFT in association rule mining.

4. a. Apply the DBSCAN algorithm with the similarity threshold 0.8 to the given data points and Minpoints>=2(Minimum required point in the cluster). What are the boarder points, Nosie(outlier) in the set of point given in the table

	P1	P2	Р3	P4	P5
P1	1.00	0.10	0.41	0.55	0.35
P2	0.10	1.00	0.64	0.47	0.98
Р3	0.41	0.64	1.00	0.44	0.85
P4	0.55	0.47	0.44	1.00	0.76
P5	0.35	0.98	0.85	0.76	1.00

b. Explain how outlier detection is performed in the context of time series data? 3 CO2 K4

CO2

7

K4

K4

5.a. Find the proximity measure of the following tabular data: - 10 CO2

Text1	Text2	Text3		
(Nominal)	(Ordinal)	(Numerical)		
A	EXCELLENT	45		
В	FAIR	22		
С	GOOD	64		
A	EXCELLENT	28		

6. a. Write short note on:

(i) Issues regarding classification and prediction

(ii) Outlier Analysis

7.a. Discuss the applications of social network analysis in different domains. 5 CO3 K3

b. Describe the challenges associated with privacy and ethical considerations in 5 CO4 K2 social network analysis.

8. a. Explain the differences between web content mining, web structure mining, and 5 CO4 K2 web usage mining.

b. Describe the applications of multimedia data mining in social media. 5 CO4 K2

--- End of Paper ---