Reg.

No

Time: 3 Hrs

GIET UNIVERSITY, GUNUPUR – 765022 M. Tech (First Semester) Examinations, January – 2024

MPCTE1020 - Conductive and Radiative Heat Transfer

(Heat Power and Thermal Engineering)

Maximum: 70 Marks

(The figures in the right hand margin mulcate marks.)		$(2 \times 10 = 20 \text{ Marks})$	
PART – A		$(2 \times 10 = 20)$	wiarks)
Q.1. Answer all questions		CO#	Blooms
			Level
a.	Describe conduction. Write down the two types of conduction.	C01	K1
b.	Define thermal resistance.	CO1	K1
c.	Describe Fourier's law of conduction.	CO1	K1
d.	Define orthotropic solids.	CO1	K1
e.	Define fins (or) extended surfaces.	CO3	K1
f.	Define Fin efficiency and Fin effectiveness.	CO3	K1
g.	Write the differential equation governing the heat transfer in fins.	CO3	K1
h.	State Kirchhoff's law of radiation.	CO4	K1
i.	Describe black body and gray body.	CO4	K1
j.	Describe the purpose of radiation shield.	CO4	K1

(The figures in the right hand margin indicate marks)

PART – B

(10 x 5=50 Marks)

Answer ANY FIVE questions		Marks	CO#	Blooms
				Level
2. a.	Explain in brief about the semi-infinite solid.	5	CO1	K1
b.	Define isotropic and anisotropic solids? Give few differences between them.	5	CO1	K1
3.a.	An aluminium rod and a copper rod of equal length 2.0 m and cross-sectional area	5	CO1	K3
	2 cm^2 are welded together in series. One end is kept at a temperature of 10 °C and			
	the other at 30 $^{\circ}$ C. Calculate the amount of heat taken out per second from the hot			
	end. (Thermal conductivity of aluminium is 200 W / m $^\circ C$ and of copper is			
	390 W∕m °C).			
b.	The energy lost from a 10 cm thick slab of steel is 50 W. Assuming the temperature	5	CO1	K3
	difference of 10.0 K, find the area of the slab. (Thermal conductivity of			
	steel = 45 W/m K).			
4.	A steel ball of diameter 60 mm is initially in thermal equilibrium at 1030°C in a	10	CO2	K3
	furnace. It is suddenly removed from the furnace and cooled in ambient air at 30°C,			
	with convective heat transfer coefficient $h = 20$ W/m ² K. The thermophysical			
	properties of steel are: density ρ =7800 kg/m³, conductivity k = 40 W/mK and			

specific heat c = 600 J/kgK. Describe the time required in seconds to cool the steel ball in the air from 1030°C to 430°C ?

5.a.	An infinitely long pin fin, attached to an isothermal hot surface, transfers heat at a	5	CO3	K2
	steady rate of Q_1 , to the ambient air. If the thermal conductivity of the fin material			
	is doubled, while keeping everything else constant, the rate of steady-state heat			
	transfer from the fin becomes Q_2 . Describe the ratio Q_2/Q_1 ?			
b.	The heat loss from a fin is 6 W. The effectiveness and efficiency of the fin are 3	5	CO3	K2
	and 0.75, respectively. Describe the heat loss (in W) from the fin, keeping the			
	entire fin surface at base temperature?			
6. a.	A 3 cm long, 2 mm x 2 mm rectangular cross-section aluminium fin $[k = 237]$	5	CO3	K3
	$W/m^{\circ}c$] is attached to a surface. If the fin efficiency is 65%, Describe the			
	effectiveness of this single fin?			
b.	A body takes 4 minutes to cool from 100°C to 70°C. If the room temperature is	5	CO3	K3
	15°C, what will be the time taken to cool from 70°C to 40°C?			
7.a.	Calculate the following for an industrial furnace in the form of a black body and	5	CO4	K3
	emitting radiation at 2500°C			
	Monochromatic emissive power at $1.2 \Box m$ wave length.			
	(i)Total emissive power,			
	(ii)The total emissive power of the furnace if it is assumed as a real surface having			
	emissivity equal to 0.9.			
b.	A black body at 3000 K emits radiation Calculate the following	5	CO4	K3
	(i) Wave length at which emission is maximum			
	(ii) Maximum emissive power			
	(iii) Total emissive power,			
8. a.	Prove Kirchhoff's law of thermal radiation.	5	CO4	K2
b.	Derive relation for heat exchange between infinite parallel planes.	5	CO4	K2

--- End of Paper ---