QP	Code: RJ23MTECH043 Reg. No									AY 23
					N TT TT			000	1	
(GIET UNIVERSITY, GUNUPUR – 765022 M. Tech (First Semester) Examinations, January– 2024									
MPECH1032 - Chemical Reactor Analysis					-					
(Chemical Engineering)						lovir	,	70 Mortza		
Time: 3Hrs Maximum: 70 Marks (The figures in the right hand margin indicate marks.)										
PA	PART – A (2 x 10 = 20 Marks)						Marks)			
Q.1.	Answer all questions							(CO#	Blooms
	-									Level
a.	Determine ε_A for a reaction A+ Inerts = 2R	R + Inerts	having	; 20%	inerts	in the	reacta	nt	CO2	K2
	initially.									
b.	State General form of Arrhenius equation.								CO1	K1
c.	c. On doubling the concentration of reactant, the rate of reaction triples. Determine the				ne	CO3	K1			
	reaction order.									
d.	Differentiate space time and space velocity								CO2	K2
e.	What are the factors affecting the rate of re	action?							CO3	K2
f.	What are C and E curves?								CO2	K1
g.	For the complex reaction with stoichiome	tryA + 3E	$3 \rightarrow 2R$	ι+S,	what	is the	e relatio	on	CO4	K1
	between r_A , r_B , r_R .									
h.	How can you differentiate micro mixing an	id macro i	nixing?)					CO3	K2
i.	What is effectiveness factor? Write its imp	ortance in	cylindi	rical p	ore.				CO2	K2
j.	Write the three steps of surface kinetics.								CO2	K1
PART – B (10 x 5=50 Marks)										

Answer ANY FIVE questions		Marks	CO#	Blooms
				Level
2. a.	A certain reaction has a rate given by -r, = $0.005C^2$, mol/cm ³ .min. If the	4	CO1	K1
	concentration is to be expressed in mol/liter and time in hours, what would be the			
	value and units of the rate constant?			
b.	Liquid A decomposes by second-order kinetics, and in a batch reactor 50% of A	6	CO2	K2
	is converted in a 5-minute run. How much longer would it take to reach 75%			
	conversion?			
3.	Draw a neat sketch of semi-batch reactor and derive the semi-batch reactor	10	CO2	K2
	modelling (reactant concentration) expression.			

4. a.	Derive the performance equation for irreversible second order bimolecular	4	CO4	K1
	constant volume batch reactor.			
b.	Evaluate the maximum time for C_{Rmax} , in a series reaction of $A \rightarrow R \rightarrow S$, with	6	CO2	K2
	the rate constants for first order reactions K_1 and K_2 are 5 and 2 $\mbox{min}^{\text{-1}}$			
	respectively.			
5.a.	Derive the performance equation for plug flow reactor for variable volume with	5	CO4	K2
	first order kinetics.			
b.	Derive the design equation of non-ideal plug flow reactors.	5	CO2	K3
6. a.	A first order reaction is to be treated in a series of two mixed reactors. Prove that	4	CO4	K2
	the total volume of the two reactors is minimum, when the reactors are equal in			
	size.			
b.	Draw a neat sketch of multi bed adiabatic reactor for SO3 production.	6	CO3	K2
7.a.	Differentiate between single site and dual site mechanism of surface reaction	4	CO4	K2
b.	Explain the mechanism of catalyst deactivation.	6	CO4	K1
8. a.	What are the different steps for mechanism of mass transfer in solid-gas chemical	4	CO2	K2
	reaction?			
b.	Distinguish between batch and semi-batch reactors.	6	CO2	K1

--- End of Paper ---