Reg.

No

GIET UNIVERSITY, GUNUPUR – 765022

MCA (Second Semester Regular) Examinations, May – 2024 MCA23204– Theory of Computation

Time: 3hrs

Maximum: 60 Marks

(The figures in the right hand margin indicate marks)										
PAR	$\mathbf{A}\mathbf{T} - \mathbf{A}$	$(2 \times 5 = 10 \text{ Marks})$								
Q.1	Answer ALL questions		CO #	Blooms Level						
a. V	What is finite automata? What		Co1	K1						
b. V	Write the difference between		Co2	K2						
	Find out the language generation		Co3	K1						
	What is Instantaneous Descri		Co4	K1						
e. 1	Name the four closure proper		Co2	K1						
PAR	AT – B	(10 x5=50 Marks)								
Answ	er ALL questions	Marks	CO #	Blooms Level						
2. a.	Define a language over an a language with suitable example.	5	Co1	K1						
b.	Describe the Kleene star op Given the language L={ab,	00	5	Co1	K2					
		(OR)								
c.	Construct the NFA over {a in it.	5	Co3	K3						
d.	Construct the DFA to recog	5	Co3	K3						
3.a.	Derive the corresponding R	5	Co3	K3						
	Q	$\delta(Q,a)$	δ (Q,b)							
	$\rightarrow q_0$	q 1	q ₂							
	q_1	\mathbf{q}_0	q_2							
	*q ₂	q ₂	q ₂							
b.	State and prove Arden's the	5	Co2	K2						
		(OR)			~ •					
c.	Construct a NFA that recognize expression $(a b)^*abb$.	5	Co3	K2						
d.	Convert the given NFA to i	5	Co3	K3						
	Q	$\delta(Q, a)$	$\delta(Q,b)$							
	→A	{A}	{A,B}							
	В	{C}	{C}							
	*C	φ	φ							
4.a.	What is ambiguity. Check X+X X*X X a is ambigu	-	th production rules: $X \rightarrow$	5	Co2	K2				

b.	Find a reduced grammar equivalent to the grammar G, having production rules,							Co2	K2
	P: S \rightarrow AC B, A \rightarrow a, C \rightarrow c BC, E \rightarrow aA e								
c.	(OR) Prove that $L = \{a^{i}b^{i} \mid i \ge 0\}$ is not regular.							Co2	K2
d.	Define finite state machine mathematically. Briefly explain all the components					5 5	Co3	K1	
	Basic model of FSM.						-		
5.a.	Convert the following CFG into CNF $S \rightarrow XY \mid Xn \mid p$ $X \rightarrow mX \mid m$ $Y \rightarrow Xn \mid o$							Co2	K2
b.	Design a PDA to accept $\{0^n1^n n>1\}$.Draw the transition diagram for the PDA and identify the instantaneous description(ID)of the PDA which accepts the string '0011'.						5	Co4	K3
		(0	R)						
c.	Convert the grammar G:						5	Co2	K2
	$S \rightarrow a aA bB \varepsilon$								
	$A \rightarrow aA \mid aS$ $B \rightarrow cS \mid \varepsilon$								
	to a finite automata.								
d.	Construct a Turing machine that accepts the language $L=\{a^nb^n n\geq 0\}$					5	Co4	K3	
6.a.	List and describe the components of a PDA. Provide a detailed explanation of						5	Co4	K1
h	each component and its role.						5	Co4	K 1
b.	Explain the basic model of Turing machine in detail. (\mathbf{OP})						5	204	IX1
c.	(OR) Consider the following ε -NFA. Compute the ε -closure of each state and find its equivalent NFA.						5	Co3	K3
		3	a	b	C				
	→p	ф	{p}	{q}	{r}				
	q	{p}	{q}	{r}	ф				
	*r	{q}	{r}	ф	{p}				
d.	Differentiate between NFA and DFA.						5	Co3	K2
	End of Paper								

--- End of Paper ---