Reg.

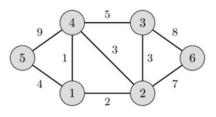
No

Time: 3hrs

GIET UNIVERSITY, GUNUPUR – 765022 M.C.A (Second Semester) Regular Examinations, May – 2024 MCA23201 – Design and Analysis of Algorithms

Maximum: 60 Marks

PART –	(2 x 5 = 10 Marks)			
	× ×			
Q.1. A	inswer ALL questions		CO #	Blooms Level
a. Is	$2^{n+1} = O(2^n)$? Justify.		CO-1	L-5
b. W	hat are the maximum and minimum numbers of elements in a heap of height h?		CO-2	L-3
с. Н	ow many spanning trees can be constructed from a complete graph with "n" vertices?		CO-3	L-4
d. W	hich technique is used to solve the N Queen problem?		CO-4	L-1
e. Li	ist the name of at least 4 NP-Complete problems		CO-5	L-2
PART - <u>Answe</u>	(10 Marks	x5=50 CO #	Marks) Blooms Level	
2. a.	What is asymptotic notation? Why the asymptotic notation is used? Explain different asymptotic notations briefly.	5	CO-1	L-1
b.	Solve the following recurrence relation using the recursion tree method.	5	CO-1	L-2
	T(n) = 4T(n/2) + n			
	(OR)s			
с.	Explain the different characteristics of the algorithms. How is the performance of an algorithm evaluated?	5	CO-1	L-1
d.	Solve the following Recurrence relation using the Master method (i) $T(n) = 2T(n/4) + \sqrt{n}$ (ii) $T(n) = 16T(n/4) + n^3$	5	CO-1	L-2
3. a.	Sort the following array using Heap-Sort Technique $A = \{25, 18, 32, 90, 20, 10, 45\}$	5	CO-2	L-3
b.	Find an optimal Parenthesization of Matrix-Chain Multiplication whose sequence of dimensions is $A_1 [2 \times 4]$, $A_2 [4 \times 6]$, $A_3 [6 \times 3]$, and $A_4 [3 \times 5]$ by using the dynamic programming method. (OR)	5	CO-2	L-4
c.	Write the Quick Sort algorithm and find the best-case and worst-case time complexity.	5	CO-2	L-3
d.	Find out the Longest Common Subsequence of the following two strings by using the dynamic programming method. $X = \{B, C, D, A, A, C, D\}$ $Y = \{A, C, D, B, A, C\}$	5	CO-2	L-4
4. a.	For the given set of items and knapsack capacity = 60 kg, find the optimal solution for the fractional knapsack problem by using the greedy approach. Item I ₁ I ₂ I ₃ I ₄ I ₅	5	CO-3	L-5


Item	I_1	I_2	I_3	I_4	I ₅
Weight	5	10	20	30	40
Value	30	20	100	90	160

CO-3 L-5

L-5

5

b. Compute and construct the Minimumcost Spanning Tree for the following undirected weighted graph by using Kruskal's Algorithm.

в

2

F

(OR)

c. Given 10 activities along with their Start (S_i) and Finish (F_i) time as 5 CO-3 L-4 follows:

A

Ai	A ₁	A ₂	A ₃	A4	A ₅	A ₆	A ₆	A ₈	A9	A ₁₀
Si	1	2	3	4	7	7	9	9	11	12
Fi	3	5	4	7	10	9	11	13	12	14

Compute a schedule where the maximum number of activities takes place.

d. Using Dijkstra's single-source-shortestpath algorithm find out the shortest path from source vertex "A" to all other vertices from the following graph. 6 5 CO-3

н

5. a.	How many spurious hits and valid hits does the Rabin-Karp matcher	5	CO-4	L-5
	encounter in the text $T = 314159265358923$ when looking for the pattern P			
	= 92 with the working modulo $q = 11$?			
b.	Using the backtracking approach find the subset sum where $Sum = 14$ from	5	CO-4	L-3
	the given set $S = \{2, 4, 6, 8\}$.			
	(OR)			
c.	Write down the Naive string-matching algorithms.	5	CO-4	L-2
d.	How to find Chromatic Numbers in Graph colouring problems?	5	CO-4	L-2
6. a.	Write an approximation algorithm for solving the Travelling Salesman	5	CO-5	L-1
	Problem.			
b.	Define P, NP, NP-hard, and NP-complete and represent their relation with	5	CO-5	L-2
	the Venn diagram with proper labelling.			
	(OR)			
c.	What is the difference between P and NP?	5	CO-5	L-1
d.	What are the characteristics of an approximation algorithm?	5	CO-5	L-2

--- End of Paper ---