Reg.

No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022 M.C.A (First Semester) Regular Examinations, January – 2024 MCA23105 - Discrete Mathematics

Maximum: 60 Marks

111		wianiiiu	II. 00 I	viains
(The figures in the right hand margin indicate marks) PART – A $(2 \times 5 =$		10 Marks)		
Q.1. Answer ALL questions			CO #	Blooms Level
a.	Define Tautology with suitable example.		CO2	K1
b.	What is Closure of relations?		CO1	K1
c.	Define a Monoid with suitable examples.		CO1	K1
d.	Define lattice with examples.		CO1	K 1
e.	The planner representation of a simple graph with 4 vertices split the plane in to 2	regions	CO1	K1
	then how many edges it has?			
$PART - B \tag{10 x 5 = 50 Mark}$				
Answer ALL questions Marks		CO #	Blooms Level	
2. a	a. Show the following equivalence $P \to (Q \lor R) \Leftrightarrow (P \to Q) \lor (P \to R)$.	5	CO3	K3
t	Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$.	5	CO3	K3
	(OR)			
C	c. Show the following implication $((P \vee \neg P) \rightarrow Q) \rightarrow ((P \vee \neg P) \rightarrow R) \Rightarrow (Q \rightarrow R)$). 5	CO3	K3
Ċ	Proved that $\sum_{n=1}^{N} n^3 = \left(\frac{N(N+1)}{2}\right)^2$ by method of induction.	5	CO2	К3
3.8	a. What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 =$ and $a_1 = 7$?	2 5	CO3	K3
ł	5. Suppose that there are 1807 freshmen at your school. Of these, 453 are taking course in computer science, 567 are taking a course in mathematics, and 299 ar taking course in both computer science and mathematics. How many are not taking a course either in computer science or in mathematics?	re	CO2	K2
C	Find the transitive electron of the relation $\mathbf{D} = \{(a, b), (b, a), (a, b)\}$ define	d 5	CO3	К2
		-		

- c. Find the transitive closure of the relation $R = \{(a, b), (b, c), (c, a), (c, b)\}$ defined 5 CO3 K2 on the set $A = \{a, b, c\}$.using Wars hall's algorithm.
- d. Draw the Hasse diagram of the POSET ($p\{a, b, c\}, \subseteq$). Where $p\{a, b, c\}$ is the 5 ^{CO3} ^{K3}

power set of {a, b, c}.And also find the least and greatest elements of it.

- 4.a. If D30 is the set of positive divisors of 30. Is it a Boolean lattice under the 5 CO3 K3 relation a divides? Justify your answer.
 - b. In any Boolean algebra, show that $a = b \Leftrightarrow (a \star \overline{b}) \oplus (\overline{a} \star b) = 0.$ 5 CO3 K4
 - (OR)
 - c. Let $E(x_1, x_2, x_3, x_4) = (x_1 \star x_2) \oplus (x_1 \star x_3) \oplus (\bar{x}_2 \star x_3)$ be a Boolean 5 ^{CO3} ^{K4} expression. Find its disjunctive and conjunctive normal forms.
 - d. In any Boolean algebra, show that $(a \le b) \Rightarrow a \oplus (b \star c) = b \star (a + c)$. 5 CO3 K2
- 5.a. If $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ be a sub-group of G under the operation 5 CO3 K3 multiplication then find all the left cosets of H in G.
 - b. Is Z_4 a group under additive binary operations? If yes, find the order and all 5 CO2 K3 subgroup of Z_4 .

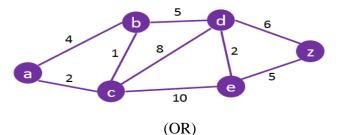
(OR)

- c. Verify the set of rational numbers excluding zero is an Abelian group under 5 CO3 K4 multiplication.
- d. Define homomorphism between two groups with suitable examples. 5 CO2 K3
- 6.a. Write the three differences between path and walk. 5 CO2 K3

CO3

CO3

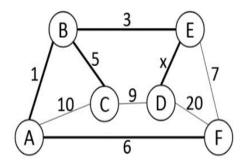
5


K4

K3

K4

5


b. Use Kruskal's algorithm to find the minimum cost spanning tree.

Define Hamilton paths and give an example.5CO2

d. Find minimum spanning tree by prim's algorithm

c.

--- End of Paper ---