

GIET UNIVERSITY, GUNUPUR – 765022

M. B. A (Fourth Semester Regular) Examinations, May – 2024 21MBAPC24001 – Operations Research

Time	: 3 hrs	Maximu	ım: 60	Marks
	(The figures in the right hand margin indicate marks.)			
PAI		$(2 \times 10 =$	= 20 Ma	arks)
Q.1. A	Answer ALL questions		CO #	Blooms Level
a. V	What do you mean by canonical form of LPP?		CO1	L1
	Define optimal solution.		CO1	L1
	How can we resolve degeneracy in an LPP?		CO2	L1
	State the fundamental theorem of duality.		CO2	L2
	Define optimal solution to a T.P.		CO3	L2
	How do you convert the maximization assignment problem into a minimization on	<u></u>	CO3	 L1
_		σ:	CO4	L1
0	Define a game.		CO4	L1 L2
	When do you say a game is stable?		C04	L2 L1
	Distinguish between PERT and CPM.			
5	What are the three common errors in the construction of network?	<i></i>	CO5	L2
PA.	RT – B	$(8 \times 5 =$	40 Ma	irks)
			GO #	DI
Answ	er ALL questions	Marks	CO #	Blooms Level
2. a.	Egg contains 6 units of vitamin A and 7 units of vitamin B per gram and costs 12 paise	8	CO1	L3
	per gram. Milk contains 8 units of vitamin A and 12 units of vitamin B per gram and			
	costs 20 paise per gram. The daily minimum requirement of vitamin A and vitamin B are			
	100 units and 120 units respectively. Find the optimal product mix.			
	(OR)			
b.	Solve the following LPP by graphical method.	8	CO1	L3
	$Minimize Z = 20x_1 + 10x_2$			
	Subject to			
	$x_1 + 2x_2 \leq 40$			
	$3x_1 + x_2 \geq 30$			
	$4\mathbf{x}_1 + 3\mathbf{x}_2 \ge 60$			
	$x_1, x_2 \ge 0$		~ ~ ~ ~	
3.a.	Solve the following LPP by using simplex method.	8	CO2	L4
	$Max Z = 2x_1 + x_2$			
	Subject to,			
	$4\mathbf{x}_1 + 3\mathbf{x}_2 \le 12$			
	$4x_1 + x_2 \leq 8$			
	$4\mathbf{x}_1 - \mathbf{x}_2 \leq 8$			
	$\mathbf{x}_1, \mathbf{x}_2 \ge 0 \tag{OD}$			
1	(OR)	0	CO2	L4
b.	Write the dual of the following LPP. Min $7 - 2x + 5x$	8	002	L4
	$Min Z = 2x_2 + 5x_3$			
	Subject to, $x_1 + x_2 \ge 2$			
	$x_1 + x_2 \le 2$ $2x_1 + x_2 + 6x_3 \le 6$			
	$2x_1 + x_2 + 6x_3 \le 0$ $x_1 - x_2 + x_3 = 4$			
	$x_1 - x_2 + x_3 - 4$ $x_1, x_2, x_3 \ge 0$			
4.a.	A company has three plants A, B and C and three warehouses X, Y and Z. number of	8	CO3	L3
т .а.	units available at the plants is 60, 70 and 80 respectively. Demands at X, Y and Z are 50,			-

80 and 80 respectively. Unit costs of transportation are as follows:

Comment	Warehouses					
Company	X	Y	Ζ			
A	8	7	3			
В	3	8	9			
С	11	3	5			

What would be your transportation plan? Give minimum distribution cost.

(OR)

b. Four different jobs can be done on four different machines and the take-down time costs 8 CO3 L4 are prohibitively high for change overs. The matrix below gives the cost in rupees for producing job *i* on the machine *j*.

Icha	Machines							
Jobs	M1	M2	M3	M4				
1	5	7	11	6				
2	8	5	9	6				
3	4	7	10	7				
4	10	4	8	3				

How should the jobs be assigned to the machines so that the total cost is minimized?

5.a. Two competitors A and B are competing for the same product. Their different strategies 8 CO4 L3 given in the following payoff matrix:

		Player B			
		Ι	II	III	IV
	Ι	3	2	4	0
Diarian A	II	3	4	2	4
Player A	III	4	2	4	0
	IV	0	4	0	8

Use dominance principle to find the optimal strategies.

(OR)

- b. A and B each take out one or two matches and guess how many matches opponent has taken. If one of the players guess correctly, then the looser has to pay him as many rupees as the sum of the numbers held by both the players. Otherwise, the payout is zero. Write down the payoff matrix and obtain the optimal strategies of both players.
- 6.a. A small maintenance project consists of the following jobs, whose precedence 8 CO5 L3 relationships are given below:

CO5

8

L4

Job	1-2	1-3	2-3	2-5	3-4	3-6	<i>4-5</i>	4-6	5-6	6-7
Time (days)	15	15	3	5	8	12	1	14	3	14
Duran an annual line and an air at the annial state										

(i) Draw an arrow diagram representing the project.

(ii) Find the floats for each activities.

(iii) Find critical path and the total project duration.

(OR)

b. The time estimates and other characteristics of a project are given below:

A ativity		Duration (day	Immediate	
Activity (i – j)	Optimistic time	Most likely time	Pessimistic time	predecessor
А	4	5	12	None
В	3	7	11	А
С	8	10	18	А
D	5	7	9	В
Е	3	4	11	В
F	7	9	19	С
G	0.5	3.5	9.5	D
Н	1	1	1	E,F
Ι	5	11	17	G,H

(i) Determine the critical path and expected project duration.

(ii) What is the probability that the project can be completed in 40 weeks?

(iii) If the project manager wished to be 90% sure that the project is completed on

December 31, 2023, when should he start the project?

--- End of Paper ---