QP Code: RM22MSC119	Reg.					
	No					

GIET UNIVERSITY, GUNUPUR - 765022

AY 22

M. Sc. (Fourth Semester) Examinations, May – 2024

20MTPC403 - Functional Analysis - II

(Mathematics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

PA	RT - A	(2 x 10 = 20 Marks)				
Q.1	Answer ALL Questions	СО	#	Blooms		
a.	Define unitary and normal operator	CO	1	Level K1		
b.	State banach —alaoglu theorem.	CO	2	K2		
c.	Define weak*convergent	CO	2	K2		
d.	Define weak convergent Define bounder operator	СО	2	K2		
e.	Define bounded below.		2	K2		
f.	state the Riesz-Fischer theorem		2			
g.	State the Polarization identity		3	K1		
h.	Define separable set.		4	K2		
i.	Define weak convergent.		4	K2		
j.	State the Bolzano-Weierstrass theorem.	СО	4	K2		
PART – B			(10 x 5=50 Ma			
Ans	swer ANY FIVE the questions	Marks	CO#	Blooms Level		
2.	State and prove unique Hahn-Banach extension theorem.	10	C01	К3		
3.	State and prove projection theorem.	10	C01	К3		
4.	State and prove Riesz representation theorem	10	C02	К3		
5.	Let H be a Hilbert space then prove, Let A and B be self-adjoint. Then A+B is self adjoint. Also AB is self –adjoint if and only if A and B commute	10	C03	К3		
6.	Let H be a Hilbert space and $A \in BL(H)$ then prove that	10	C03	К3		
	(a) $Z(A)=R(A^*)^{\perp}$ and $Z(A^*)=R(A^*)^{\perp}$ A is injective if and only if $R(A^*)$ is dense in H, and A^* is injective if and only if $R(A)$ is dense in H (b) $R(a)=H$ if and only if A^* is bounded below, and $R(A^*)=H$ if and only if is A is bounded below					
7.	Let X be a normed space and (x_n) be a sequence in X prove that if (x_n) is bounded and $(x_n)(x)$ is a Cauchy-sequence in X for each x in a subset of X whose span is dense in X , then (x_n) is weak convergent in X , the converse holds if X is a Banach space.	10	C04	К3		
8.	Let H be a Hilbert space .consider A,B \in BL(H)AND $k \in k$. Then prove that $(A+B)^*=A^*+B^*, (KA^*)=\bar{k}A^*, (AB)^*=B^*A^*, (A^*)^*=A$. Further, A is invertible if and only if A^* is invertible	10	C04	K3		