| QP Code: RM22MSC117 | Reg. |  |  |  |  |  | AY 22 |
|---------------------|------|--|--|--|--|--|-------|
|                     | No   |  |  |  |  |  |       |



## GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (Fourth Semester) Examinations, May – 2024 **20CHPC401 - Physical Chemistry - III** 

(Chemistry)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

| PART - A                                                                                                                                     | $(2 \times 10 = 20 \text{ Marks})$ |       |                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-----------------|--|
| Q.1. Answer ALL Questions                                                                                                                    |                                    | CO#   | Blooms<br>Level |  |
| a. Calculate the ionic strength of 0.5M of (NH <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub>                                                   |                                    | CO1   | K2              |  |
| b. Calculate the standard cell potential Ni/Ni <sup>2+</sup> <sub>(1M)</sub>    Ag <sup>+</sup> <sub>(1M)</sub> /Ag                          |                                    | CO2   | K2              |  |
| ${\rm E^o}_{{\rm Ni}}{}^{2+}/{\rm Ni} = -0.25 \ { m V}$<br>${\rm E^o}_{{\rm Ag}}{}^+/{\rm Ag} = 0.80 \ { m V}$                               |                                    |       |                 |  |
| c. Differentiate between physical and chemical adsorption.                                                                                   |                                    | CO3   | K2              |  |
| d. What is F- center formation?                                                                                                              |                                    | CO4   | K2              |  |
| e. On titrating conductometrically a NaOH solution with a mixture of HCl                                                                     | and                                | CO1   | K2              |  |
| CH <sub>3</sub> COOH solutions, plot the volume of mixed acid added (b) in Y axis against conductance(A) in X axis is expected to look like: | st the                             |       |                 |  |
| f. Discuss about solution pressure and osmotic pressure.                                                                                     |                                    | CO2   | K2              |  |
| g. What is microemulsion?                                                                                                                    |                                    | CO3   | K2              |  |
| h. Find the M.I for intercept a. (a,2b,3c), b. (-2,1,3)                                                                                      |                                    | CO4   | K2              |  |
| i. Explain cationic and anionic surface active agents.                                                                                       |                                    | CO3   | K2              |  |
| j. Write the Braggs equation for constructive and destructive interference.                                                                  |                                    | CO4   | K2              |  |
| PART – B                                                                                                                                     |                                    | 50 Ma | rks)            |  |
| Answer ANY FIVE the questions                                                                                                                | Marks                              | CO#   | Blooms<br>Level |  |
| 2. Derive lappimann's equation.                                                                                                              | 10                                 | CO1   | K4              |  |
| 3.a. Discuss about the working of Galvanic cell                                                                                              | 8                                  | CO2   | K4              |  |
| b. What are the standard conditions for electrode potential?                                                                                 | 2                                  | CO2   | K2              |  |
| 4. a. Derive the Langmuir Theory of adsorption (Dissociative).                                                                               | 10                                 | CO3   | K4              |  |
| 5.a. Classify unit cell on the basis of location of lattice point.                                                                           | 5                                  | CO4   | К3              |  |
| b. Classify unit cell on the basis of axial length and interfacial bond angle.                                                               | 5                                  | CO4   | К3              |  |
| 6. a. Explain activity and activity coefficient with an example.                                                                             | 10                                 | CO1   | K4              |  |
| 7.a. Describe about Wet corrosion and pitting corrosion.                                                                                     | 5+5                                | CO2   | К3              |  |
| 8. a. Explain the structure of CaF <sub>2</sub> , calculate the formula unit, coordination number and density. (Given side a= 1 unit)        | 8                                  | CO4   | K4              |  |
| b. Write the 2D structure of DCC.                                                                                                            | 2                                  | CO4   | K2              |  |
| End of Paper                                                                                                                                 |                                    |       |                 |  |