QP Code: RD22MSC121	Reg.						AY 22
	Ma						

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc (Third Semester) Examinations, December – 2023

22PHPC301 - Relativistic Quantum Mechanics & Field theory
(Physics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

PART – A				$(2 \times 10 = 20 \text{ Marks})$			
Q.1.	Answer ALL questions	C	CO#	Blooms Level			
a.	What is central potential and give its characteristics?	(CO1	K1			
b.	Discuss the concepts of Relativistic quantum mechanics.	C	CO1	K1			
c.	Discuss about the positive and negative energy states.	CO1		K1			
d.	Show that $\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\delta_{\mu\nu}$	CO2		K2			
e.	Write short notes on 'Dirac Hole theory'.	CO2		K1			
f.	State Noether's theorem and its consequence.	CO3		K1			
g.	Differentiate between global and local symmetries.	CO3		K1			
h.	Discuss the various steps towards quantization of a field.	CO4		K1			
i.	Define a neutral scalar meson field.	CO4		K1			
j.	Differentiate between neutral and charged meson field.	C	CO4	K1			
PART – B		(10 x 5=50 Marks)					
Ans	wer ANY FIVE questions	Marks	CO#	Blooms Level			
2. a	Derive the Klein-Gordan equation for a free particle? Discuss its drawbacks.	10	CO1	K1			
3.8	Derive the expression for the Klein Gordan equation in an Electromagnetic		CO1	K1			
	field for a zero spin particle?						
4. a	Discuss the properties of gamma matrices.	5	CO2	K1			
t	Discuss about the non-relativistic correspondence of Dirac equation in the presence of electromagnetic field.	5	CO2	K1			
5.8		10	CO2	K 1			
	interaction energy.						

6. a. Show that symmetry leads to a conservation using Noether's theorem. Discuss 10 CO3 K1 about the space time translation invariance.
7.a. What is a field? Formulate the Hamiltonian for the field? Derive the Poisson 10 CO3 K1 bracket formulation for the fields.
8. a. Derive the expression for the momentum in terms of creation, annihilation and 10 CO4 K1

number operators for charged meson field.