Reg. No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Third Semester) Regular Examinations, December - 2023

22MTPC301 - Measure Theory & Integration

(Mathematics)

Maximum: 70 Marks

PART – A		(2 x 10 = 20 Marks)	
Q.1. Answer ALL questions		CO #	Blooms Level
a.	Define equivalence relation with example.	CO1	K1
b.	Define outer measure.	CO1	K1
c.	Explain Every subset of a countable set is countable.	CO1	K2
d.	Prove that ϕ is measurable set.	CO2	K3
e.	Define step function.	CO2	K3
f.	Define Monotone Convergence Theorem.	CO2	K2
g.	Explain Differentiation of Monotone functions.	CO3	K1
h.	Explain absolutely continuous functions.	CO3	K2
i.	State Minkowski Inequality Theorem.	CO4	K1
j.	Define Banach Spaces.	CO4	K2

(The figures in the right hand margin indicate marks.)

PART – B

(10 x 5 = 50 Marks)

Answ	ver ANY FIVE questions	Marks	CO #	Blooms
				Level
2. a.	Prove that the union of a finite collection of measurable sets is measurable.	5	CO1	K1
b.	Prove that The outer measure of an internal is its length.	5	CO1	K1
3.a	Let A be any set and $\langle E_i \rangle$ be a sequence of disjoint measurable sets and.	7	CO1	K1
	Then $\mathfrak{m}^*(\mathcal{A} \cap \bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mathfrak{m}^* (\mathcal{A} \cap E_i).$			
b	Prove that If $m^*A = 0$, then $m^*(A \cup B) = m^*B$.	3	CO1	K2
	Lebesgue measure is countably additive, that is, if $\{E_k\}_{k=1}^{\infty}$ is a countable	5	CO2	K2
iiu	disjoint collection of measurable sets, then its union $U_{k=1}^{\infty}E_k$ also is measurable and $m(U_{k=1}^{\infty}E_k) = \sum_{k=1}^{\infty}m(E_k)$.	U		
b	Prove that the function <i>f</i> has a measurable domain E. Then the following	5	CO2	K2
	statements are equivalent:			
	i. For each real number α , the set $\{x : f(x) > \alpha\}$ is measurable.			
	ii. For each real number α , the set $\{x : f(x) \ge \alpha\}$ is measurable.			
	iii. For each real number α , the set $\{x : f(x) < \alpha\}$ is measurable.			
	iv. For each real number α , the set $\{x : f(x) \le \alpha\}$ is measurable.			
	Each of these properties implies that for each extended real number c, the set			
	$\{r: f(r) - \alpha\}$ is measurable			

 $\{x: f(x) = \alpha\}$ is measurable.

5.a	Let f and g be integrable over E. Then:	5	CO2	К2
	i. The function αf is integrable over E, and $\int_{E}' \alpha f = \alpha \int_{E}' f$.			
	ii. Then function $f + g$ is integrable over E, and			
	$\int_E' f + g = \int_E' f + \int_E' g$.			
	iii. If $f \leq g$ then $\int_{E} f \leq \int_{E} g$			
	iv. If A and B are disjoin measurable sets contained in E, then			
	$\int_{A\cup B}^{\cdot} f = \int_{A}^{\cdot} f + \int_{B}^{\cdot} f$			
b	Show that if $f(x) = \begin{cases} 0, & \text{if } x \text{ is a irrational} \\ 1, & \text{if } x \text{ is a rational}, \end{cases}$	5	CO2	
	Then $R\int_{a}^{\overline{b}} f(x)dx = b - a$ and $R\int_{a}^{b} f(x)dx = 0$.			
6.a	If $\langle f_n \rangle$ is a sequence of nonnegative measurable function and $f_n(\mathbf{x}) \rightarrow f(\mathbf{x})$ almost every where on a set E, then $\int_E^{\cdot} f \leq \underline{\lim} \int_E^{\cdot} f_n$	5	CO3	K2
b	Let f be defined and bounded on a measurable set E with mE finite. In order that $\inf_{f \le \psi} \int_{E}^{\cdot} \psi(x) dx = \sup_{f \ge \varphi} \int_{E}^{\cdot} \varphi(x) dx$	5	CO3	
	For all simple function φ and ψ , I is necessary and sufficient that f be			
	measurable			
7.	If the function f is monotone on the open interval [a, b]. Then f is differentiable almost everywhere. The derivative f' is measurable, and	10	CO3	K3
	$\int_{a}^{b} f(x) dx \le f(a) - f(b)$			
8.a	If p and q are nonnegative extended real number such that $\frac{1}{p} + \frac{1}{q} = 1$ and	5	CO4	K3
	If $f \in L^p$ and $g \in L^p$, then $f \cdot g \in L^1$ and			
	$\int f.g = \left f \right _p \cdot \left g \right _p$			
	Equality holds if and only if for some constant α and β , not both are zero, we have $\alpha f ^p = \beta g ^q$			
b	Let f and g are in $L^{P}L^{p}$ with $1 \le p \le \infty$, then so dose their sum $f + g$ and $ f + g _{p} = f _{p} + g _{p}$	5	CO4	К3
	If $1 , then equality can hold only if there are nonnegative constants$			
	α and β such that $\beta f = \alpha g$.			

--- End of Paper ---