	ı								
OP Code: RD22MSC133	Reg								AY 22
Q1 Code. RD22MBC133	ncs.								111 22
	NT.	ĺ	1	i	I		I	I	

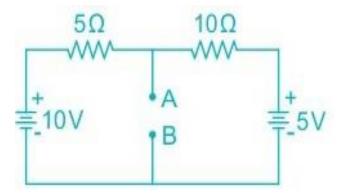
GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (Third Semester) Regular Examinations, December - 2023

22PHPE302 - Electronics

(Physics)

Time: 3 hrs Maximum: 70 Marks


(The figures in the right hand margin indicate marks.)

PART - A (2 x 10 = 20 Marks)

Q.1.	Answer ALL questions	CO#	Blooms Level
a.	Draw the frequency response curve of RC coupled amplifier and Transformer coupled amplifier.	CO1	K1
b.	Define pinch off voltage in FET.	CO1	K2
c.	What is cascading amplifier	CO2	K1
d.	Distinguish between positive and negative feedback	CO2	K2
e.	Draw a CB amplifier & its hybrid equivalent circuit?	CO2	K2
f.	For the non-inverting amplifier given that input voltage is 5V and R1=1K Ω and Rf = 5K Ω . Calculate the output voltage.	CO3	K2
g.	Derive the Boolean expression for the logic circuit shown below:	CO3	K2
h.	Define common-mode rejection ratio (CMRR) and explain the significance of a relatively large value of CMRR.	CO2	K2
i.	Write the Truth table of JK flip flop. Write the condition When $J=1$ and $K=1$ in $j-k$ flip flop .	CO2	K1
j.	Calculate the Thevenin resistance across the terminal AB for the following circuit	CO3	K2

 $PART - B ag{10 x 5} = 50 Marks)$

Answer ANY FIVE questions			CO#	Blooms Level
2. a.	With the neat diagram explain the working principle of two-stage transformer- coupled amplifier and find voltage gain of transformed coupled amplifier at low frequency range	5	CO1	K2
b.	Explain construction and working principle of FET.	5	CO1	K1
3.a.	Derive the frequency of oscillation for a phase shift oscillator using CE Transistor	7	CO1	K2
b.	What is phase shift oscillator? Write its condition.	3	CO2	K1
4. a.	Explain the characteristic of negative feedback and effect of negative feedback on input impedance and output impedance	5	CO2	K2
b.	Draw the neat-labelled diagram for dual input, balanced output.	5	CO3	K1
5.a.	Derive the frequency of oscillation for a Wein Bridge oscillator using CE Transistor	7	CO3	K2
b.	Explain Feedback amplifier and its principle.	3	CO1	K1
6. a.	With the neat circuit diagram explain DC signal analysis.	5		K1
b.	e. Explain the operation of an op-amp as (i) adder (ii) subtractor			K1
7.a.	. Explain TTL,RTL and DTL using OR gate.			K1
b.	What is an Analog-to-Digital Converter? Explain the main components of an ADC.	5	CO3	K2
8. a.	Simplify the following expression and draw the logic circuit I.Y = $[A\bar{B}(C+BD)+A\bar{B}]C$ II. Y = $(A+B)(\bar{A}+C)(B+C)$	5	CO3	K2
b.	State and explain Thevenins theorem. Obtain thevenin's equivalent circuit with respect to the terminals of AB of the network shown in the circuit.	5	CO3	K2

