Reg.					
No					

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022 M. Sc. (Third Semester) Examinations, December – 2023 22PHPE304 - Condensed Matter & Materials Physics-1

(Physics)

Maximum: 70 Marks

AY 22

K2

P	(The figures in the right hand margin indicate marks.) ART – A	(2 x 10 = 20 Marks)			
Q.1.	Answer ALL questions	C	2O #	Blooms Level	
a.	Write momentum and energy conservation relation in inelastic scattering of phone	ons. C	201	K1	
b.	Based on Debye model discuss the T dependence of C_V .	C	201	K2	
c.	If $\omega^2(k) = \omega_0^2 (3 - \cos k_x a - \cos k_y a - \cos k_z a)$, velocity $(v_g) = ?$	C	201	K3	
d.	Write down the different contributions to Hartee's potential.	C	202	K2	
e.	Show that superconductor acts as perfect diamgnet.	C	203	K3	
f.	A superconducting tin has a critical temp. of 3.7K at zero magnetic field and a critical field of 0.0306T at 0K. Find the critical field at 2 K.	C	203	K2	
g.	What is coherence length?	C	203	K1	
h.	Write the principle of SQUID.	C	204	K1	
i.	What is vortex state of a superconductor?	C	204	K2	
j.	What is isotope effect?	C	204	K3	
PART – B					
P	ART – B	(10 x 5	= 50 M	larks)	
	ART – B wer ANY FIVE questions	(10 x 5 Marks	= 50 M co #	larks) Blooms Level	
	wer ANY FIVE questions			Blooms	
<u>Ans</u>	wer ANY FIVE questions . Describe the Einsten's model of lattice heat capacity.	Marks	CO #	Blooms Level	
<u>Ans</u> 2. a b	wer <i>ANY FIVE</i> questions . Describe the Einsten's model of lattice heat capacity.	Marks	CO # CO1	Blooms Level K1	
<u>Ans</u> 2. a b	 wer ANY FIVE questions Describe the Einsten's model of lattice heat capacity. Discuss failure of Einstein's model. What is Hartee-Fock approximation? Discuss Jellium model to solve Hartee-Fock equation. 	Marks 8 2	CO # CO1 CO1	Blooms Level K1 K2	
<u>Ans</u> 2. a b 3.a	 wer ANY FIVE questions Describe the Einsten's model of lattice heat capacity. Discuss failure of Einstein's model. What is Hartee-Fock approximation? Discuss Jellium model to solve Hartee-Fock equation. How Jellium model differ from free electron model. 	Marks 8 2 8	CO # CO1 CO1 CO2	Blooms Level K1 K2 K2	
<u>Ans</u> 2. a b 3.a b	 wer ANY FIVE questions Describe the Einsten's model of lattice heat capacity. Discuss failure of Einstein's model. What is Hartee-Fock approximation? Discuss Jellium model to solve Hartee-Fock equation. How Jellium model differ from free electron model. Obtain an expression the frequency of phonon generated when a photon is scattered inelastically at an angle θ. 	Marks 8 2 8 2 2	CO # CO1 CO1 CO2 CO2	Blooms Level K1 K2 K2 K2	

6. a.	Discuss the theory proposed by Bardeen-Cooper- Schrieffer for SC.	8	CO3	K2
b.	What is Cooper pair?	2	CO3	K1
7.a.	Discuss BCS ground state based on microscopic theory of SC.	8	CO4	K2
b.	What is a fluxoid in SC?	2	CO4	K2
8. a.	Explain the difference between type-I and type-II superconductor. What is Meissner effect?	8	CO3	К2
b.	Based on Meissner effect state the magnetic nature of superconductor.	2	CO3	K1