Reg.						AR 22
N.T						

QP Code: RJ22MSC085

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc (Second Semester) Examinations, July - 2023

22PHPC203 - Basic Solid State Physics (Physics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right-hand margin indicate marks.)								
P	ART - A	$(2 \times 10 = 20 \text{ Marks})$						
Q.1. Answer <i>ALL</i> questions				Blooms Level				
a.	What is binding energy? Write the relation and how it varies with interatomic distances.	C	201	K1				
b.	Draw the dispersion relation for linear diatomic lattice showing acoustical and optical modes.	C	01	K1				
c.	Define the fermi -Dirac distribution function.	C	CO2	K1				
d.	Give the expression for density of state in metal.	CO2		K1				
e.	What do you understand by the effective mass of an electron? Explain its significance.	C	O3	K1				
f.	Discuss the limitations of Debye model.	CO2		K1				
g.	Discuss the applications of pyroelectric materials.	CO4		K1				
h.	What is compensated semiconductors?	CO4		K1				
i.	Prove that for Kroning penny model potential $p <<1$ energy of the lowest energy band at $k=0$ is $E=P\hbar^2/ma^2$.	CO4		K2				
j.	What are point defects and line defects?	CO4		K1				
PART – B				$(10 \times 5 = 50 \text{ Marks})$				
Ans	swer ANY FIVE questions	Marks	CO#	Blooms Level				
2.	Give account of an ionic, covalent, metallic bindings in crystal with examples.	10	CO1	K2				
3.8	The net potential energy U_0 between adjacent atoms may sometimes be represented as a function of the interatomic distance r according to the relation $U(r) = -\frac{a}{r^m} + \frac{b}{r^n}$ in which a, b, m, and n are all constants.		CO1	K2				
	Calculate the binding energy U_0 in terms of the parameters a, b, m, and n using the following procedure							
	Differentiate $U(r)$ with respect to r, then set the resulting expression equal to zero, since the curve of $U(r)$ versus r is minimum at U_0 .							
	Solve for r in terms of a, b, m, and n which yields r_0 , the equilibrium interatomic spacing.							
	Get the expression for U_0 by substituting r_0 in the equation for $U(r)$.							

b.	Explain the effect of temperature on the Fermi -Dirac distribution function.	2	CO2	K2
5.	Discuss the Kronig-Penny model for the motion of an electron in a periodic potential	10	CO3	K1
6.	Discuss about ionic and orientational polarization.	10	CO4	K1
7.	Discuss the statistics of donors and acceptors representing the freeze- out and complete ionization condition.	10	CO4	K2
8. a.	Calculate the density of electron (n_o) in conduction band in a intrinsic semiconductor in equilibrium condition.	8	CO4	K2
b.	Draw the energy level diagram indicating the conduction band, valence band, fermi level, and doner level of a n-type semiconductor	2	CO4	K1

-- End of Paper ---