Reg. No AR 22

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (Second Semester) Examinations, July - 2023

22CHPC203 - Physical Chemistry -II (Chemistry)

Time: 3hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)							
PART – A (2 x 10 =20 Marks) Q.1. Answer ALL Questions			CO#	Blooms Level			
a. Calculate value of Gamma value for monoatomic and diatomic gas.				K4			
b. How partition function is unit less, prove it?				K2			
c	on (CO1	К3				
d. Define secondary salt effect.				K2			
e. For a given first order reaction the reactant reduces to ¼ of its initial volume in 10 min. Calculate the rate constant.				K3			
f.	f. State Gibb's Heltzmolt's equation in terms of enthalpy and internal energy.						
g.	g. What are Boltzon, Bosen and fermion particles?			K2			
h. What do you mean by electric conduction?			CO2	K2			
i. What is oscillatory reaction?			CO4 CO3	K2			
j. Distribute 3 particles among various energy level (3E E O) such that total energy remains constant i.e. 3E				K4			
	PART – B (10 x 5=50 Marks)	Maalaa	CO#	D1			
Ansv	ver ANY FIVE the questions	Marks	CO#	Blooms Level			
2.	Calculate the work done for adiabatic reversible process and irreversible process.	10	CO1	K4			
3.	Maximising the thermodynamic probability of a macro state and involving LaGrange's undetermined multiplier. Derive the expression for Bose-Einsteinstatistics?	10	CO3	K3			
4. a.	Derive an expression for Entropy production in chemical reaction.	8	CO4	K4			
b.	Differentiate between equilibrium stationary state and non-equilibrium stationary state.	2	CO4	K2			
5.a.	State Lindemann theory of unimolecular reaction and write its limitations?	7	CO5	K4			
b.	For a reaction, $2A \rightarrow 3C + B$	3	CO5	K4			
	If, $-d[A]/dt=K_1[A]^2$, $d[B]/dt=K_2[A]^2$ and $d[C]/dt=K_3[A]^2$,then find the relation between K_1,K_2 and K_3 .						
6.	What do you meant by Fugacity and calculates the fugacity coefficient?	10	CO2	K3			
7.	What is partition function and explain the properties of partition functions at low and high temperature?	10	CO3	K3			
8.	Explain the collision theory of reaction rate.	10	CO5	K4			