QP Code: RJ22MSC073	Reg.					
	No					

GIET UNIVERSITY, GUNUPUR – 765022

AR 22

M. Sc (Second Semester) Examinations, July – 2023

22PHPC202- Basic Nuclear Physics (Physics)

Time: 3 hrs Maximum: 70 Marks

	(The figures in the right hand margin indicate marks.)					
P	$\mathbf{ART} - \mathbf{A}$	$(2 \times 10 = 20 \text{ Marks})$				
Q.1. Answer <i>ALL</i> questions			CO #	Blooms		
				Level		
a.	. Mention the value of magnetic moment and quadrupole moment of deuteron		O 1	K1		
b.	b. State the relation between nuclear radius and binding energy with one example.		O 1	K2		
c.	c. Define isospin with suitable examples.		O 1	K1		
d.	d. What is scattering length?		CO 2	K2		
e. Mention Yukawa' potential and find the mass of a meson.		CO 2		K1		
f.	f. Write Semi-empirical mass formula.		O 3	K1		
g.	g. Discuss nuclear fusion with an example.		CO 3	K2		
h. Define a compound nucleus with examples.		CO 3		K1		
i.	i. Find out the Spin-parity value of ${}_{6}C^{13}$ and ${}_{12}Mg^{24}$		CO 4	K2		
j. Plot the necessary graph to show Schmidt lines.		C	O 4	K2		
PART – B		$(10 \times 5 = 50 \text{ N})$		Aarks)		
Answer ANY FIVE questions		Marks	CO#	Blooms		
				Level		
2. a	Define mass defect and binding energy of a nucleus. Give one example.	7	CO 1	K2		
b	Explain the angular momentum of the nucleus	3	CO 1	K2		
3.a	Write the ground state properties of the deuteron.	4	CO 1	K1		
b	How these properties suggest that the two nucleon interaction has a tensor component?	6	CO 1	K2		
4. a	. Explain Effective range theory.	6	CO 2	K2		
b	Discuss Yukawa's meson theory.	4	CO 2	K2		
5.a	. Discuss n-p scattering	2	CO 2	K1		
b	Obtain Breit-Wigner formula for S-wave. Discuss the different cases.	8	CO 2	K2		
6. a	. Write a short note on Liquid drop model.	4	CO 3	K1		
b	Explain Bohr-Wheeler theory of fission.	6	CO 3	K2		
7.a	. What are magic numbers? Why they were named so?	4	CO 4	K1		
b	Draw the energy level diagram showing all magic numbers as followed by shell model	6	CO 4	K2		
8. a	. Mention the success and failures of single particle shell model.	4	CO 4	K1		
b	Discuss briefly about the nuclear model as stated by Bohr-Mottelson.	6	CO 4	K2		