QP Code: RJ22MSC083	Reg.					
	No					

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc (Second Semester) Examinations, July - 2023

AR 22

22MTPC203 - Partial Differential Equation (Mathematics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

PART – A		$(2 \times 10 = 20 \text{ Marks})$				
Q.1. Answer <i>ALL</i> questions		C	O#	Blooms Level		
a.	Formulate the PDE of the surface $z = xy + F(x^2 + y^2)$.	C	01	K2		
b.	Solve $x^2 p + y^2 q = z^2$	C	O1	K2		
c.	Solve $(p-q)(z-px-qy)=1$	C	01	K2		
d.	Solve $zpq = p + q$.	C	O2	K2		
e.	e. Classification of the partial differential		O2	К3		
	$U_{xx} - 2\sin x U_{xy} - \cos^2 x U_{yy} - \cos x U_y = 0$					
f.	Define hyperbolic Partial Differential equation with an example.	C	O2	K2		
g.	State the Interior Dirichlet problem for a circle.	C	O3	K1		
h.	Define Dirac delta function and write any two properties.	C	O3	K1		
i.	Define Poisson's equation	C	O4	K1		
j.	Solve Laplace equation $u_{xx} + u_{yy} = 0$ by Separating Variables method.	C	O4	K2		
PART – B		$(10 \times 5 = 50 \text{ Marks})$				
-	AKI - D	(10 X 5	= 50 M	larks)		
	swer ANY FIVE questions	(10 X 5	= 50 M	Blooms Level		
	swer ANY FIVE questions	·		Blooms		
<u>Ans</u>	swer ANY FIVE questions	Marks	CO#	Blooms Level		
<u>Ans</u>	swer <i>ANY FIVE</i> questions a. Formulate the PDE $xyz = f(x + y + z)$.	Marks	CO#	Blooms Level K1		
2. a	swer <i>ANY FIVE</i> questions a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE	Marks	CO#	Blooms Level K1		
2. a	swer <i>ANY FIVE</i> questions a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z$ passes through $y = 0$, $xz = a^3$	Marks 5 5	CO# CO2 CO2	Blooms Level K1 K1		
Ans 2. a	swer <i>ANY FIVE</i> questions a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z \text{ passes through } y = 0, xz = a^3$ B. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the integral	Marks 5 5	CO# CO2 CO2	Blooms Level K1 K1		
Ans 2. a	a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z$ passes through $y = 0$, $xz = a^3$. 6. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the integral surface which passes through $x = 0$, $z = y$.	Marks 5 5 10	CO # CO2 CO2	Blooms Level K1 K1		
Ans 2. a 1	a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z \text{ passes through } y = 0, xz = a^3$ 3. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the integral surface which passes through $x = 0, z = y$. 4. Reduce to canonical form and find the general solution of	Marks 5 5 10	CO # CO2 CO2	Blooms Level K1 K1		
Ans 2. a 1	a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z$ passes through $y = 0$, $xz = a^3$. 6. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the integral surface which passes through $x = 0$, $z = y$. 6. Reduce to canonical form and find the general solution of $y^2U_{xx} - 2xyU_{xy} + x^2U_{yy} = \frac{y^2}{x}Ux + \frac{x^2}{y}U_y$	Marks 5 5 10	CO # CO2 CO2 CO3	Blooms Level K1 K1 K1		
Ans 2. a 1	a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z$ passes through $y = 0$, $xz = a^3$. 6. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the integral surface which passes through $x = 0$, $z = y$. 6. Reduce to canonical form and find the general solution of $y^2U_{xx} - 2xyU_{xy} + x^2U_{yy} = \frac{y^2}{x}Ux + \frac{x^2}{y}U_y$ 6. Derive the interior Dirichlet problem for a circle.	Marks 5 5 10	CO # CO2 CO2 CO3	Blooms Level K1 K1 K1		
Ans 2. a 1	Swer <i>ANY FIVE</i> questions a. Formulate the PDE $xyz = f(x + y + z)$. b. Find the integral domain surface of the following PDE $(x - y)y^2p + (y - x)x^2q = (x^2 + y^2)z$ passes through $y = 0$, $xz = a^3$. 3. Find the characteristics of the PDE $p^2 + q^2 = 2$ and determine the integral surface which passes through $x = 0$, $z = y$. 4. Reduce to canonical form and find the general solution of $y^2U_{xx} - 2xyU_{xy} + x^2U_{yy} = \frac{y^2}{x}Ux + \frac{x^2}{y}U_y$ 5. Derive the interior Dirichlet problem for a circle. $\nabla^2 u = 0$, $0 \le r \le a$, $0 \le \theta \le 2\pi$	Marks 5 5 10	CO # CO2 CO2 CO3	Blooms Level K1 K1 K1		

- 7. A stretched string of finite length L is held fixed at its ends and is subjected to 10 CO3 K3 an initial displacement $u(x,0) = u_0 \sin(\pi x/L)$. The string is released from this position with zero initial velocity. Find the resultant time dependent motion of the string.
- 8. A string of length L is released from rest in position y = f(x). Show that the 10 CO4 K3 total energy of string is $\frac{\pi^2 T}{4L} \sum_{n=1}^{\infty} s^2 K_s^2$ Where $K_s = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{s\pi x}{L}\right) dx$ and total energy $E = \frac{T}{2} \int_0^L \left[\left(\frac{\partial y}{\partial x}\right)^2 + \frac{1}{c^2} \left(\frac{\partial y}{\partial t}\right)^2 \right] dx$.

T is tension of the string. If the mid-point of a string is pulled aside through a small distance and then released. Show that in the subsequent motion the fundamental mode contributes $8/\pi^2$ of the total energy

--- End of Paper ---