_						
Rea						
ncg.						
•						
No						

QP Code: RJ22MSC057

GIET UNIVERSITY, GUNUPUR - 765022

AR 22

Blooms

K4

CO#

M. Sc (Second Semester) Regular Examinations, July - 2023

22CHPC201 - Organic Chemistry -II (Chemistry)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

PART - A $(2 \times 10 = 20 \text{ Marks})$

- Q.1. Answer *ALL* questions Level CO1 K4 Why Halogen groups being electron withdrawing group are o,p-directing
- CO₁ K4 Explain Benzene has a lower electrophilic substitution reaction reactivity than Five membered heterocycles (pyrroles, furan and thiophene)
- CO₁ K4 Which among the following is most reactive in electrophilic substitution?

CO₂ Complete the reaction and explain the mechanism

- CO₂ K2 Draw the energy profile diagram of SN_1 and SN_2 .
- CO₂ **K**3 What do you mean by walden inversion.
- K4 CO₃ Write Halohydrin reaction g.
- CO₃ K4 Why Cyclopropane shows addition reaction.
- According to Bredt's rule which of the following alkenes are likely to exist? CO₄ K4

CO₄ K4 Explain the reaction

PART – B			(10 x 5=50 Marks)			
Answer ANY FIVE questions		Marks	CO#	Blooms Level		
2. a.	Explain Arenium ion mechanism.	5	CO1	K2		
b.	What is the order of reactivity for the following molecules towards electrophilic aromatic substitution. Give the explanation	5	CO1	K4		
	$ \begin{array}{c cccc} CH_3 & CH_3 & CH_3 & CH_3 \\ CH_3 & CH_3 & CH_3 & CH_3 \end{array} $					
3.	Explain ArSN2 & ArSN1 mechanism	10	CO2	К3		
4. a.	Write about Sharpless asymmetric epoxidation?	5	CO3	K2		
b.	Describe Hydrogenation of double and triple bonds?	5	CO3	K2		
5.a.	Differentiate between E2, E1 and E _{1CB} elimination?	6	CO4	K5		
b.	Write down the possible products, explain which one will be major product and why?	4	CO4	K4		
	Pyrolysis O CH3					
6. a.	Write a note on Diazonium coupling.	5	CO1	K2		
b.	Explain Free radical substitution at bridge head as allylic halogenation.	5	CO1	K4		
7.a.	Explain Oxymercuration-Demercuration reaction with its mechanism.	10	CO3	K2		
8. a.	What is Saytzeff and Hofmann Elmination?	5	CO4	K4		

--- End of Paper ---

5

CO4

K2

b. Write about the mechanism and orientation in pyrolytic elimination?