Reg.						AR
No						

22

QP Code: RJ22MSC095

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (Second Semester) Examinations, July - 2023

22MTPC204 - Mathematical Statistics (Mathematics)

Time: 3 hrs Maximum: 70 Marks

	: 3 hrs	Maximum	. , 0 1,	Iuiko
DAI	(The figures in the right hand margin indicate marks.) $\mathbf{R}\mathbf{T} - \mathbf{A}$			
	Answer ALL Questions	(2 x 1	0 =20	Marks)
a.	For two events A and B, $P(A) = 0.5 P(B) = 0.6$ and $P(A \cup B) = 0.8$ then find		CO1	K2
	P(A/B) and $P(B/A)$.			
b.	Derive mean and variance of discrete uniform distribution.		CO1	K2
c.	Prove that the second central moment is equal to $E(X^2) - (E(X))^2$		CO1	K2
d.	Find Maximum likelihood estimator for mean of normal distribution.		CO2	K2
e.	If X,Y are independent random variables then prove that $E[XY] = E(X)E(Y)$.		CO2	К3
f.	Define alternative hypothesis.		CO3	K1
g.	A traffic junction on an average 3 accidents per day. Then what is the probability that on a selected day there will be at least 3 accidents.		CO3	K2
h.	A sample of 100 measurements at breaking strength of cotton thread gave a mean of 7.4 and a standard deviation of 1.2 gms. Find 95% confidence limits for the mean breaking strength of cotton thread.		CO3	K2
i.	Define Type-I and Type-II errors.		CO4	K1
j.	Show that $Cov(X,Y) = E(XY) - E(X)E(Y)$.		CO4	K2
ъ.	D.W. D	10 5 50		
PA	RT - B			
Ans	wer ANY FIVE the questions	10 x 5 = 50 Marks		ks) Blooms
Ans	· ·		CO#	*
<u>Ans</u> 2. a	wer ANY FIVE the questions			Blooms
2. a	wer ANY FIVE the questions	Marks	CO#	Blooms
2. a	wer ANY FIVE the questions . State and prove Baye's theorem.	Marks	CO#	Blooms Level K3
2. a	wer <i>ANY FIVE</i> the questions State and prove Baye's theorem. If two Events A and B are independent, then prove that	Marks	CO#	Blooms Level K3
2. a	wer <i>ANY FIVE</i> the questions State and prove Baye's theorem. If two Events A and B are independent, then prove that i) A' and B are independent	Marks	CO#	Blooms Level K3
2. a	wer <i>ANY FIVE</i> the questions State and prove Baye's theorem. If two Events A and B are independent, then prove that i) A' and B are independent ii) A and B' are independent iii) A' and B' are independent	Marks	CO#	Blooms Level K3
2. a ł	wer <i>ANY FIVE</i> the questions State and prove Baye's theorem. If two Events A and B are independent, then prove that i) A' and B are independent ii) A and B' are independent iii) A' and B' are independent	Marks 5 5	CO# CO1	Blooms Level K3 K2
2. a ł	 State and prove Baye's theorem. If two Events A and B are independent, then prove that A' and B are independent A and B' are independent A' and B' are independent A' and B' are independent With usual notations, prove that E(X - K)² = Var(X) + [E(X) - K]². Show that the Poisson distribution is limiting case of Binomial distribution. 	Marks	CO# CO1 CO1	Blooms Level K3 K2
2. a t	 State and prove Baye's theorem. If two Events A and B are independent, then prove that A' and B are independent A and B' are independent A' and B' are independent A' and B' are independent With usual notations, prove that E(X - K)² = Var(X) + [E(X) - K]². Show that the Poisson distribution is limiting case of Binomial distribution. 	Marks 5 5 5	CO# CO1 CO1 CO1	Blooms Level K3 K2 K2

the random variable $Y_1 = X_1 + X_2$.

Joint density function of the random variable X and Y is 6. a.

$$f(x, y) = 6x$$
, $0 < x < 1, 0 < y < 1 - x$

- a) Find marginal density functions of X and Y.
- b) Show that X and Y are not independent.
- X_1 and X_2 be two independent random variables having joint density b. function $f(x_1, x_2) = 4x_1x_2$ $0 < x_1 < 1$, $0 < x_2 < 1$. Find the joint distribution of $Y_1 = X_1^2$ and $Y_2 = X_1 X_2$.
- CO3 5

CO4

CO4

K3

CO3

K3

K3

K3

- 7.a. A random sample of 30 apples was taken from a large population. On measuring their diameter, the mean diameter of the sample was 91 millimetres with a standard deviation of 8 mm. Calculate the 95% confidence limits for the mean diameter of the whole population of apples.
 - CO4 **K**3 5

10

5

- b. In the population, the average IQ is 100 with a standard deviation of 15. A team of scientists want to test a new medication to see if it has either a positive or negative effect on intelligence, or not effect at all. A sample of 30 participants who have taken the medication has a mean of 140. Did the medication affect intelligence? (Use 0.05 Level of significance).
- The grades of a class of 9 students on a midterm report (x) and on the final examination (y) are as follows

X	77	50	71	72	81	94	96	99	67
y	82	66	78	34	47	85	99	99	68

Estimate the covariance

--- End of Paper ---