QP Code: RJ22MSC059	Reg.						AR 22
	NTo						

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc (Second Semester) Regular Examinations, July - 2023

22MTPC201- Linear Algebra (Mathematics)

2

2

2

2

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

PART – A		$(2 \times 10 = 20 \text{ Marks})$			
Q.1. Answer <i>ALL</i> questions		CO	Blooms		
	•	#	Level		
a.	Define inner product space and give an example.	1	1		
b.	Define dual space with example	1	1		
c.	What is minimal polynomial? Give an example.	2	1		
d.	Write the statement of the Rank-Nullity theorem?	2	1		
e.	Write down the step's to find the solution of system of linear equations in Cramer'	s rule. 2	1		
f.	What do you mean by LU-decomposition of a square matrix?	3	1		

 $PART - B ag{10 x 5} = 50 Marks$

Prove that the eigen values of Hermitian matrix *A* are real.

Define eigenvalue. Write down any matrix and find it's eigen values.

Show that A^{-1} exists iff 0 is not an eigen value of A.

Write a matrix and verify the Caley-Hamilton Theorem.

Answer ANY FIVE questions			CO	Blooms
			#	Level
2. a.	What is Gram-Schmidt Orthogonalization Process?	2	1	3
b.	Write the derivation for Gram-Schmidt Orthogonalization Process.	8	1	2
3.a.	If V and W are of dimensions m and n respectively over F then $Hom(V, W)$ is of dimension mn over F .	10	1	2
4. a.	What do you mean by basis of a vector space?	2	2	1
b.	Let $D: P_3 \to P_2$ be defined $D(p) = p'$. Let $B_1 = \{1, x, x^2, x^3\}$ be the standard basis for P_3 . Let $B_2 = \{1, x, x^2\}$ be the standard basis for P_2 . Find matrix of D relative to B_1 and B_2 .	8	2	3
5.a.	If $T \in A(V)$ has all its characteristic roots in F , then there is a basis of V in which the matrix of T is triangular.	10	2	2
6. a.	Assume that $p(t)$ is a minimal polynomial of a linear operator T on a finite dimensional vector space V . Show that if $g(T) = 0$, then $p(t)$ divides $g(t)$, for any polynomial $g(t)$ then the minimal polynomial $p(t)$ divides the characteristic polynomial of T .	6	3	3

- b. Find the minimal polynomial of the matrix $A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$.
- 7.a. What do you mean by diagonalization of a matrix? 2 4
 - b. Find the modal matrix and diagonalizes the matrix $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$.
- 8. a. Determine the nature, index and signature of the quadratic form $2x_1^2 + 2x_2^2 + 6$ $3x_3^2 + 2x_1x_2 4x_1x_3 4x_2x_3$.
 - b. Show that Transpose of a unitary matrix is unitary.

 4 4 2

--- End of Paper ---