QP Code:	RF23MSC015
----------	------------

Reg.					
No					

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (First Semester) Regular Examinations, February - 2024

22MTPC102 – Topology (Mathematics)

Time: 3 hrs

Maximum: 70 Marks

P	(The figures in the right hand margin indicate marks.) ART – A	(2 x 10 = 20 Marks)		
Q.1.	Answer ALL questions	CO #	Blooms	
a.	Define discrete topology and give one example.	CO1	Level K1	
b.	Define Closure of topology with example.	CO1	K1	
c.	Explain Relative topology.	CO1	K2	
d.	Show that A^0 is largest open subset of A.	CO2	K2	
e.	Define compactness and give one example.	CO2	K1	
f.	Show that $C = \left\{ \left(0, \frac{n}{n+1}\right) : n \in N \right\}$ is a cover of (0,1).	CO2	K3	
g.	Define connected and disconnected space.	CO3	K1	
h.	Define regular space.	CO3	K1	
i.	Show that every discrete space is a Hausdorff space.	CO4	K2	
j.	Define metric space.	CO4	K2	

PART – B

(10 x 5 = 50 Marks)

Answer ANY FIVE questions			CO #	Blooms Level	
2. a.	Let (X,T) be a topological space and let A, B are non empty subsets of X,	5	CO1	K3	
	then prove that				
	i. $D(\emptyset) = \emptyset$				
	ii. $x \in D(A) \Longrightarrow x \in D(A - \{x\})$				
	iii. $A \subset B \Longrightarrow D(A) \subset D(B)$				
	IV. $D(A \cup B) \implies D(A) \cup D(B)$				
	$V. D(A \cap B) \Longrightarrow D(A) \cap D(B)$				
b.	Let (X,T) be a topological space and $A \subset X$. A point x of A is an interior	5	CO1	K2	
	point of A iff it is not a limit point of X - A.				
3.a.	Let $T = \{X, \emptyset, \{p\}, \{p, q\}, \{p, q, t\}, \{p, q, r, s\}, \{p, r, s\}\}$ be the topology on	5	CO1	K2	
	X={p, q, r, s, t}.Determine limit points, closure, interior, exterior and				
	boundary of the following sets :				
	i. $A = \{r, s, t\}$				
	ii. $\mathbf{B} = \{\mathbf{q}\}$				

b. If T_1 , T_2 are two topologies defined on the same set X, then $T_1 \cap T_2$ is also a 5 CO1 K2 topology on X, but $T_1 \cup T_2$ is not a topology on X.

4. a.	Show that a closed subset of a compact space is compact	5	CO2	K3
b.	If A, B be separated sets of a topological space (X,T) then prove that			K2
	i. $A \cup B$ is closed \Rightarrow A and B are closed			
	ii. $A \cup B$ is open \implies A and B are open.			
5.a.	Prove that the union of two non-empty separated subset of a topological space	5	CO2	K2
	is disconnected.			
b.	If \mathbf{f} and \mathbf{g} are continuous real or complex functions defined on a topological	5	CO2	K3
	space X , then $f + g$, αf and fg are also continuous . Furthermore , if			
	f and g are real then $f \lor g$ and $f \land g$, are continuous.			
6. a.	A topological space (X, T) is a T_0 -space iff for any distinct arbitrary points x,	5	CO3	K3
	y of X, the closure of $\{x\}$ and $\{y\}$ are distinct			
b.	A topological space (X, T) is a T_1 -space <i>iff</i> T contains the cofinite topology	5	CO3	K2
	on X			
7.a.	Show that (X, T) is a T_4 -space \implies (X, T) is a T_2 -space.	5	CO3	K2
b.	Prove that the T_1 -axiom of separation is a hereditary property.	5	CO3	K2
8. a.	State and prove Holder's inequality.	5	CO4	K2
b.	State and prove Hilbert space.	5	CO4	K2