QP Code:	RF23MSC023
----------	------------

Reg. No

Time: 3 hrs

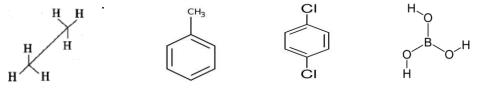
GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (First Semester) Regular Examinations, February - 2024

22CHPC103 - Physical Chemistry-I

(Chemistry)

Maximum: 70 Marks


(The figures in the right hand margin indicate marks.)

PART – A

(2 x	10	=20	Marks)
(- •		

Q.1.	Answer ALL Questions	CO#	Blooms Level	,
0				
a.	Identify the Mulliken notation for the following irreducible representation:	CO1	K4	
	$\begin{bmatrix} E & C & nC_2 & i & \sigma h \end{bmatrix}$			
	n 1 1 -1 -1 -1			
h		CO2	K2	
b. с.	How many meta stable curves are there in the phase diagram of sulphur? Calculate the zero point energy of a electron of path length 10 nm.	CO3	K2	
c. d.	Define Recursion of a function.	CO4	K2	
	The symmetry point group of the given structure:	CO1	K4	
С.	e. The symmetry point group of the given structure:			
f.	f. Explain Meta stable curve with suitable example.		K2	
g.	What is the degeneracy of SHO given that $E_{3D} = 23/2$ hU.	CO3	K2	
h.	Describe the process of program writing.	CO4	K2	
i.	Find the symmetry elements and point group of the given molecules:	CO1	K4	
j.	Calculate the Electron density and bond order of butadiene system.	CO3	K2	
$\mathbf{PART} - \mathbf{B} \tag{1}$		0 x 5 = 50 Marks)		
Ans	wer ANY FIVE the questions	Marks	CO#	Blooms Level
2. a	 Find out the matrix representation of different symmetry elements (E, i, σ-matrix) 	5	C01	K4
b		5	CO1	K4
3.	State the phase rule with different case studies.	10	CO2	K4
4.	Derive Schrödinger wave function for hydrogen atom. Conversion of Cartesian co-ordinate into spherical co-ordinate.	10	CO3	K4
5.	Programme for Computer Vander Waal's constants 'a' and 'b' for a gas by PV^2 , V	10	CO4	K4
	$a = \frac{PV^2}{n^2}, \ b = \frac{V}{n}$			
6.	Define Point group and its types. Find the point group for the following Species:	10	CO1	K4
	Dage 1 of 7			

AY 23

7.a	Prove that momentum operator is a Hermitian Operator.	5	CO3	K4
b.	Derive Schrödinger wave equation for a free particle in 1D box.	5	CO3	K3
8.	Draw and discuss the phase diagram for one component system application to Sulphur.	10	CO2	K4

--- End of Paper ---