	ı				1		1	1	1
QP Code: RF23MSC025	Reg.								AY 23
	No	1	1	1		1			

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (First Semester) Regular Examinations, February - 2024

22MTPC103 - Ordinary Differential Equation

(Mathematics)

Time: 3 hrs Maximum: 70 Marks

(The	figures	in 1	he '	right	hand	margin	indic	ote ma	rke)

	PART - A	$(2 \times 10 = 2)$	0 Marks)	
Q.1.	Answer ALL questions		CO#	РО
a.	Give an example of linear differential equation with variable coefficient.		CO2	K1
b.	Find the CF for $y_2 + n^2y = secnx$		CO2	K1
c.	Verify $x_1(t) = \sin t$ and $x_2(t) = \cos t$ is linear independent or linear dependent		CO1	K1
d.	Form the differential equation by eliminating arbitrary constants, $xy = Ae^x + Be^{-x}$	where	CO1	K1
Α	A & B are arbitrary constants Solve xy dy - $2y^2dx=0$		CO1	K1
	Find the order and degree of the differential equation		CO1	K2
1.	$5\frac{d^2y}{dx^2} + 2\{1 - \left(\frac{dy}{dx}\right)^3\}^{\frac{1}{2}} - x = 0$			
g.	Write the matrix form of system of linear differential equations with constant coeffici	ents	CO3	K2
h.	Find the CF for $(D^2 - 1)(D^2 + 1)^2 y = 0$		CO2	K2
i.	State strum's separation		CO4	K1
j.	Find the PI for $(D^2 - 2D + 1)y = e^{3x}$		CO2	K2

 $PART - B ag{10 x 5} = 50 Marks$

Answ	er ANY FIVE questions	Marks	CO#	Blooms
				Level
2. a.	$solve \frac{dy}{dx} = \frac{4x + 6y + 5}{3y + 2x + 4}$	5	CO1	K2
b.	Solve $y - x\left(\frac{dy}{dx}\right) = a(y^2 + \frac{dy}{dx})$	5	CO1	K2
3.a.	Find all the solutions of the equation $\underline{\dot{x}} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{pmatrix} \underline{x}$	5	CO3	K2
b.	Find the general solution of the system	5	CO3	K2
	$\frac{dx}{dt} = 3x - y & \frac{dy}{dt} = 4x - y$			
4. a.	Solve the DE $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$	5	CO2	K2
b.	Solve $xy'' - (2x - 1)y' + (x - 1)y = 0$ by reducing the order	5	CO3	K2

5.a. Apply the method of variation of parameters to solve

5 CO2 K2

$$y_2 + 4y = 4tan2x$$

- b. Using the method of undetermined coefficients, solve $(D^2 2D)y = e^x sinx$ 5 CO2 K2
- 6. a. Find the general solution of the system $\frac{dx}{dt} = 4x y & \frac{dy}{dt} = 2x + y$ 5 CO3 K2
 - b. Solve $(x^2 4xy 2y^2)dx + (y^2 4xy 2x^2)dy = 0$ 5 CO1 K2
- 7.a. Solve $\frac{xdy}{dx} + y = y^2 log x$ 5 CO1 K2
 - b. Solve $(D^2+3D+2)y = sin3x.cos2x$ by operative method 5 CO2 K2
- 8. State and prove strum's comparison theorem. 10 CO4 K2