RF23MSC013	Reg.						AY- 23
	No						

QP Code:

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc. (First Semester) Regular Examinations, February - 2024

22CHPC102 - Inorganic Chemistry-I

(Chemistry)

Time: 3 hrs Maximum: 70 Marks

P	(2 x 1)	x 10 = 20 Marks)		
Q.1.	Answer ALL questions		CO#	Blooms
a.	On the basis of hybridization, discuss the geometry of the following moleculum IF7 and XeF4	es:	CO1	Level K2
b.	Difference between Bonding and antibonding orbitals.		CO1	K1
c.	Define crystal field stabilization energy. Calculate its value for the d^6 low s tetrahedral.	pin	CO2	K2
d.	The name of complex ion, $[Fe(CN)_6]^{3-}$ is		CO2	K1
e.	Draw the Orgel diagrams for d^2 configurations of metal ions in their transition mecomplexes.	etal	CO2	K2
f.	Discuss the electronic spectra of transition metal ions, Ti ³⁺ and V ³⁺ in their aqueosolution.	ous	CO3	K2
g.	CdS, HgS and BiI ₃ are coloured due to which charge transfer spectra explain.		CO4	K1
h.	What are nuclear reactions?		CO4	K1
i.	Calculate the electronic ground state term for 'Cr' ion in [Cr(CN ₆)] ⁻⁴		CO3	K2
j.	What is radio carbon dating?		CO4	K1
PART – B			5=50 M	larks)
Ans	swer ANY FIVE questions	Marks	CO#	Blooms Level
2. a	a. Explain $[\text{Co (NH}_3)_6]^{3+}$ is an inner-orbital complex where as $[\text{Ni (NH}_3)_6]^{2+}$ is an outer-orbital complex	6	CO2	K2
ł	Define crystal field stabilization energy. Calculate its value for the d^8 high spin tetrahedral.	4	CO2	K1
3.8	a. Explain the potential energy diagram for H ₂ molecule.	10	CO1	K2
4. a	a. Explain on the basis of MO theory as to why oxygen molecule is paramagnetic while nitrogen molecule is diamagnetic.	6	CO1	K2
ł	b. Write the postulates of Molecular orbital theory.	4	CO1	K1
5.8	systems:	6	CO3	K2
ł	 (a) d⁹ octahedral and d¹ tetrahedral The value of Δo in [Mn(H₂0)₆] ³⁺ is 15,800 cm⁻¹ while the mean pairing energy (P) in this complex is 28,000 cm⁻¹. Do you expect this ion to be high or low spin? 	4	CO3	K2

6. a.	Derive the Rutherford -Soddy law.	6	CO4	K2
b.	Write short note on Nuclear Fission	4	CO4	K1
7.a.	Discuss the electronic spectra of $[Co(H_2O)_6]^{+2}$, $[FeCl_4]^{2-}$ and $[CoCl_4]^{2-}$.	6	CO3	K1
b.	$[MnO_4]^-$ is deep blue colour whereas $[ReO_4]^-$ is colourless .Explain it	4	CO3	K1
8. a.	Discuss metal to ligand charge transfer spectra.	6	CO3	K2
b.	What is radioactivity? In what units is radioactivity measured?	4	CO4	K1